DOI: 10.24075/vrgmu.2018.001

ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Исследование клонального репертуара фракции активированных Т-лимфоцитов у пациента с анкилозирующим спондилитом

Е. А. Комеч, Ю. Б. Лебедев, А. В. Кошенкова, Д. С. Сырко, Е. А. Мусаткина, С. А. Лукьянов, Д. М. Чудаков, И. В. Звягин
Информация об авторах

Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва

Для корреспонденции: Звягин Иван Владимирович
ул. Островитянова, д. 1, г. Москва, 117997; moc.liamg@nigayvzi

Информация о статье

Финансирование: работа поддержана Министерством образования и науки РФ, идентификатор проекта RFMEFI60716X0158.

Благодарности: авторы выражают признательность пациенту, принявшему участие в исследовании; врачу-гематологу, профессору кафедры гематологии и терапии им. А. А. Максимова Денису Анатольевичу Федоренко из Национального медико-хирургического центра имени Н. И. Пирогова — за консультации по клиническим вопросам; старшему научному сотруднику Елене Ивановне Коваленко из Института биоорганической химии им. М. М. Шемякина и Ю. А. Овчинникова за помощь в осуществлении цитофлуорометрического анализа.

Статья получена: 15.12.2017 Статья принята к печати: 25.12.2017
|
  1. Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis — insights into pathogenesis. Nat Rev Rheumatol. 2016 Feb; 12 (2): 81–91.
    DOI: 10.1038/nrrheum.2015.133.
  2. Benjamin R, Parham P. Guilt by association: HLA-B27 and ankylosing spondylitis. Immunol Today. 1990 Apr; 11 (4): 137–42.
  3. Faham M, Carlton V, Moorhead M, Zheng J, Klinger M, Pepin F et al. Discovery of T-Cell Receptor Beta Motifs Specific to HLA-B27(+) Ankylosing Spondylitis by Deep Repertoire Sequence Analysis. Arthritis Rheumatol. 2017 Apr; 69 (4): 774–84.
    DOI: 10.1002/art.40028.
  4. Komech EA, Pogorelyy MV, Egorov ES, Britanova OV, Rebrikov DV, Bochkova AG et al. CD8+ T cells with characteristic TCR beta motif are detected in blood and expanded in synovial fluid of ankylosing spondylitis patients. Rheumatology (Oxford). Forthcoming 2018.
  5. Duchmann R, May E, Ackermann B, Goergen B, Meyer zum Büschenfelde KH, Märker-Hermann E. HLA-B27-restricted cytotoxic T lymphocyte responses to arthritogenic enterobacteria or self-antigens are dominated by closely related TCRBV gene segments. A study in patients with reactive arthritis. Scand J Immunol. 1996 Jan; 43 (1): 101–8.
  6. Dulphy N, Peyrat MA, Tieng V, Douay C, Rabian C, Tamouza R et al. Common intra-articular T cell expansions in patients with reactive arthritis: identical beta-chain junctional sequences and cytotoxicity toward HLA-B27. J Immunol. 1999 Apr 1; 162 (7): 3830–9.
  7. May E, Dulphy N, Frauendorf E, Duchmann R, Bowness P, Lopez de Castro JA et al. Conserved TCR beta chain usage in reactive arthritis; evidence for selection by a putative HLA-B27-associated autoantigen. Tissue Antigens. 2002 Oct; 60 (4): 299–308.
  8. Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M, Linnarsson S et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods. 2011 Nov 20; 9 (1): 72–4. DOI: 10.1038/nmeth.1778.
  9. Mamedov IZ, Britanova OV, Zvyagin IV, Turchaninova MA, Bolotin DA, Putintseva EV et al. Preparing unbiased T-cell receptor and antibody cDNA libraries for the deep next generation sequencing profiling. Front Immunol. 2013; 4: 456. Published online 2013 Dec 23.
    DOI: 10.3389/fimmu.2013.00456.
  10. Zvyagin IV, Mamedov IZ, Tatarinova OV, Komech EA, Kurnikova EE, Boyakova EV et al. Tracking T-cell immune reconstitution after TCRαβ/CD19-depleted hematopoietic cells transplantation in children. Leukemia. 2017; (31): 1145–53. DOI: 10.1038/leu.2016.321.
  11. Shugay M, Britanova OV, Merzlyak EM, Turchaninova MA, Mamedov IZ, Tuganbaev TR et al. Towards error-free profiling of immune repertoires. Nat Methods. 2014 Jun; 11 (6): 653–5. DOI: 10.1038/nmeth.2960. Epub 2014 May 4.
  12. Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putintseva EV et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods. 2015 May; 12 (5): 380–1. DOI: 10.1038/nmeth.3364.
  13. Britanova OV, Putintseva EV, Shugay M, Merzlyak EM, Turchaninova MA, Staroverov DB et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. J Immunol. 2014 Mar 15; 192 (6): 2689–98.
    DOI: 10.4049/jimmunol.1302064.
  14. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. 2014. Available from: http://www.r-project.org/.
  15. Bisset LR, Lung TL, Kaelin M, Ludwig E, Dubs RW. Reference values for peripheral blood lymphocyte phenotypes applicable to the healthy adult population in Switzerland. Eur J Haematol. 2004 Mar; 72 (3): 203–12. DOI: 10.1046/j.0902-4441.2003.00199.x.
  16. Egorov ES, Merzlyak EM, Shelenkov AA, Britanova OV, Sharonov GV, Staroverov DB et al. Quantitative Profiling of Immune Repertoires for Minor Lymphocyte Counts Using Unique Molecular Identifiers. J Immunol. 2015 Jun 15; 194 (12): 6155–63.
    DOI: 10.1049/jimmunol.1500215.
  17. Qi Q, Liu Y, Cheng Y, Glanville J, Zhang D, Lee JY et al. Diversity and clonal selection in the human T-cell repertoire. Proc Natl Acad Sci U S A. 2014 Sep 9; 111 (36): 13139–44. DOI: 10.1073/pnas.1409155111.
  18. Koning D, Costa AI, Hoof I, Miles JJ, Nanlohy NM, Ladell K et al. CD8+ TCR repertoire formation is guided primarily by the peptide component of the antigenic complex. J Immunol. 2013 Feb 1; 190 (3): 931–9. DOI: 10.4049/jimmunol.1202466.
  19. Birnbaum ME, Mendoza JL, Sethi DK, Dong S, Glanville J, Dobbins J et al. Deconstructing the Peptide-MHC Specificity of T Cell Recognition. Cell. 2014 May 22; 157 (5): 1073–87. DOI: 10.1016/j.cell.2014.03.047.
  20. Zvyagin IV, Pogorelyy MV, Ivanova ME, Komech EA, Shugay M, Bolotin DA et al. Distinctive properties of identical twins’ TCR repertoires revealed by high-throughput sequencing. Proc Natl Acad Sci U S A. 2014 Apr 22; 111 (16): 5980–5. DOI: 10.1073/pnas.1319389111.
  21. Elhanati Y, Murugan A, Callan CG, Mora T, Walczak AM. Quantifying selection in immune receptor repertoires. Proc Natl Acad Sci U S A. 2014 Jul 8; 111 (27): 9875–80. DOI: 10.1073/pnas.1409572111.
  22. Pogorelyy MV, Minervina AA, Chudakov DM, Mamedov IZ, Lebedev YB, Mora T et al. Method for identification of condition-associated public antigen receptor sequences. BioRxiv 195057. DOI: 10.1101/195057.
  23. Dulphy N, Peyrat MA, Tieng V, Douay C, Rabian C, Tamouza R et al. Common intra-articular T cell expansions in patients with reactive arthritis: identical beta-chain junctional sequences and cytotoxicity toward HLA-B27. J Immunol. 1999 Apr 1; 162 (7): 3830–39.
  24. Akondy RS, Monson ND, Miller JD, Edupuganti S, Teuwen D, Wu H et al. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response. J Immunol. 2009 Dec 15; 183 (12): 7919–30. DOI: 10.4049/jimmunol.08039003.
  25. Meditz AL, Haas MK, Folkvord JM, Melander K, Young R, McCarter M et al. HLA-DR+ CD38+ CD4+ T Lymphocytes Have Elevated CCR5 Expression and Produce the Majority of R5-Tropic HIV-1 RNA In Vivo. J Virol. 2011 Oct; 85 (19): 10189–200. DOI: 10.1128/JVI.02529-10. Epub 2011 Aug 3.
  26. Blom K, Braun M, Ivarsson MA, Gonzalez VD, Falconer K, Moll M et al. Temporal dynamics of the primary human T cell response to yellow fever virus 17D as it matures from an effector- to a memory-type response. J Immunol. 2013 Mar 1; 190 (5): 2150–8. DOI: 10.4049/jimmunol.1202234.
  27. Blom K, Braun M, Pakalniene J, Dailidyte L, Béziat V, Lampen MH et al. Specificity and dynamics of effector and memory CD8 T cell responses in human tick-borne encephalitis virus infection. PLoS Pathog. 2015 Jan 22; 11 (1): e1004622.
    DOI: 10.1371/journal.ppat.1004622.
  28. Funderburg NT, Stubblefield Park SR, Sung HC, Hardy G, Clagett B, Ignatz-Hoover J et al. Circulating CD4(+) and CD8(+) T cells are activated in inflammatory bowel disease and are associated with plasma markers of inflammation. Immunology. 2013 Sep; 140 (1): 87–97. DOI: 10.1111/imm.12114.
  29. Dulic S, Vasarhelyi Z, Bajnok A, Szalay B, Toldi G, Kovacs L et al. The Impact of Anti-TNF Therapy on CD4+ and CD8+ Cell Subsets in Ankylosing Spondylitis. Pathobiology. 2017 Dec 6. DOI: 10.1159/000484250. [Epub ahead of print.]
  30. Shugay M, Bagaev DV, Zvyagin IV, Vroomans RM, Crawford JC, Dolton G et al. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Res. 2018 Jan 4; 46 (D1): D419–D427. DOI: 10.1093/nar/gkx760.