ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Физико-химические свойства и противомикробная активность рекомбинантного фаголизина бактериофага kpp10, действующего на Pseudomonas aeruginosa

Н. П. Антонова 1,2, В. Ю. Балабаньян2, А. П. Ткачук1, В. В. Макаров3, В. А. Гущин1,3,4
Информация об авторах

1 Лаборатория трансляционной биомедицины,
Национальный исследовательский центр эпидемиологии и микробиологии имени Н. Ф. Гамалеи, Москва

2 Факультет фундаментальной медицины,
Московский государственный университет имени М. В. Ломоносова, Москва

3 ФГБУ «ЦСП» Минздрава России, Москва

4 Кафедра вирусологии, биологический факультет,
Московский государственный университет имени М. В. Ломоносова, Москва

Для корреспонденции: Владимир Алексеевич Гущин
ул. Гамалеи, д. 18, г. Москва, 123098; moc.liamg@adainawow, gro.ayelamag@nihchsug.a.rimidalv

Информация о статье

Cтатья подготовлена при поддержке Министерства образования и науки РФ в рамках проекта RFMEFI60117X0018.

Статья получена: 02.02.2018 Статья принята к печати: 23.03.2018 Опубликовано online: 27.04.2018
|
  1. Алешкин А. В., Светоч Э. А., Воложанцев Н. В., Киселева И. А., Рубальский Е. О., Ершова О. Н. и др. Инновационные направления использования бактериофагов в сфере санитарно- эпидемиологического благополучия населения Российской Федерации. Бактериология. 2016; 1 (1): 22–31.
  2. Aleshkin A, Volozhantsev N, Popova A, Svetoch E, Rubalsky E, Kiseleva I, et al. Phage-based cocktail for control of hospital- acquired pathogens. Phages 2015 Bacteriophage in Medicine, Food and Biotechnology: Conference handbook; 2015 September 01–02; St Hilda's College, Oxford, UK; 2015. p. 17.
  3. Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage. 2011; 1: 111–114.
  4. Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B, Delattre AS, Lavigne R. Learning from Bacteriophages - Advantages and Limitations of Phage and Phage-Encoded Protein Applications. Current Protein & Peptide Science. 2012; 13: 699–722.
  5. Nilsson AS. Phage therapy-constraints and possibilities. Upsala Journal of Medical Sciences. 2014; 119: 192–8.
  6. Rodríguez-Rubio L, Gutiérrez D, Donovan DM, Martínez B, Rodríguez A, García P. Phage lytic proteins: biotechnological applications beyond clinical antimicrobials. Critical Reviews in Biotechnology. 2016; 36 (3): 542–52.
  7. Fischetti VA. Lysin Therapy for Staphylococcus aureus and Other Bacterial Pathogens. Current Topics in Microbiology and Immunology. 2017; 409: 529–40.
  8. Dwivedi GR, Tyagi R, Sanchita, Tripathi S, Pati S, Srivastava SK, et al. Antibiotics potentiating potential of catharanthine against superbug Pseudomonas aeruginosa. Journal of Biomolecular Structure and Dynamics. 2017: 1–15.
  9. Uchiyama J, Rashel M, Takemura I, Kato S, Ujihara T, Muraoka A, et al. Genetic characterization of Pseudomonas aeruginosa bacteriophage KPP10. Archives of Virology. 2012; 157 (4): 733–8.
  10. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A Protein Identification and Analysis Tools on the ExPASy Server. (In) John M. Walker (ed). The Proteomics Protocols Handbook. Humana Press. 2005; 571–607.
  11. Briers Y, Walmagh M, Lavigne R. Use of bacteriophage endolysin EL188 and outer membrane permeabilizers against Pseudomonas aeruginosa. Journal of Applied Microbiology. 2011; 110 (3): 778– 85.
  12. Briers Y, Volckaert G, Cornelissen A, Lagaert S, Michiels CW, Hertveldt K, et al. Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages phiKZ and EL. Molecular Microbiology. 2007; 65 (5): 1334–44.
  13. Briers Y, Lavigne R, Walmagh M, Miller S, inventors; Lysando AG, Katholieke Universiteit Leuven, K.U. Leuven R&D, assignee. Endolysin OBPgpLYS. United States patent US 8846865 B2. 2014 Sep 30.
  14. Gerstmans H, Rodríguez-Rubio L, Lavigne R, Briers Y. From endolysins to Artilysin®s: novel enzyme-based approaches to kill drug-resistant bacteria. Biochemical Society Transactions. 2016; 44 (1): 123–8.
  15. Briers Y, Walmagh M, Van Puyenbroeck V, Cornelissen A, Cenens W, Aertsen A, et al. Engineered endolysin-based "Artilysins" to combat multidrug-resistant gram-negative pathogens. MBio. 2014; 5 (4): e01379–14.
  16. Briers Y, Walmagh M, Grymonprez B, Biebl M, Pirnay JP, Defraine V, et al. Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy. 2014; 58 (7): 3774–84.
  17. Dawson RM, Liu CQ. Cathelicidin peptide SMAP-29: comprehensive review of its properties and potential as a novel class of antibiotics. Drug Development Research. 2009; 70 (7): 481–98.
  18. Fischetti VA. Bacteriophage endolysins: A novel anti-infective to control Gram-positive pathogens. International Journal of Medical Microbiology. 2010; 300 (6): 357–62.
  19. Defraine V, Schuermans J, Grymonprez B, Govers SK, Aertsen A, Fauvart M, et al. Efficacy of Artilysin Art-175 against Resistant and Persistent Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy. 2016; 60 (6): 3480–8.
  20. Skerlavaj B, Benincasa M, Risso A, Zanetti M, Gennaro R. SMAP- 29: a potent antibacterial and antifungal peptide from sheep leukocytes. FEBS Letters. 1999; 463 (1–2): 58–62.
  21. Shin SY, Park EJ, Yang ST, Jung HJ, Eom SH, Song WK, et al. Structure–activity analysis of SMAP-29, a sheep leukocytes- derived antimicrobial peptide. Biochemical and Biophysical Research Communications. 2001; 285 (4): 1046–51.