ORIGINAL RESEARCH

Experimental approaches to the target editing of the CFTR gene using CRISPR-Cas9

Smirnikhina SA1, Anuchina AA1, Kochergin-Nikitsky KS1, Adilgereeva EP1, Yakushina VD1, Lavrov AV1,2
About authors

1 Laboratory of Mutagenesis,
Research Centre for Medical Genetics, Moscow

2 Department of Molecular and Cellular Genetics, Biomedical Faculty,
Pirogov Russian National Research Medical University, Moscow

Correspondence should be addressed: Svetlana Smirnikhina
Moskvorechie 1, Moscow, 115522; moc.liamg@sanihkinrims

About paper

Funding: the section Editing of the CFTR locus was supported by the grant of the Russian Science Foundation (Agreement 17-75-20095), the sections Increasing the expression of guide RNAs and Improving the efficacy of CFTR locus editing were supported by the Russian Academy of Sciences and the state assignment of FASO Russia.

Received: 2018-03-15 Accepted: 2018-03-20 Published online: 2018-07-04
|
  1. Krasovsky SA, Chernyak AV, Voronkov AY, Amelina EL, Kashirskaya NY, Kondratieva EI, i dr. Register of cystic fibrosis patiens in Russian Federation. 2016. Moskva: «MEDPRAKTIKA-M», 2018, 64 s.
  2. Burney TJ, Davies JC. Gene therapy for the treatment of cystic fibrosis. Appl Clin Genet. 2012 May 29; 5: 29–36.
    DOI: 10.2147/ TACG.S8873.
  3. Amaral MD. Novel personalized therapies for cystic fibrosis: treating the basic defect in all patients. J Intern Med. 2015; 277: 55–166.
  4. Cohen-Cymberknoh M, Shoseyov D, Kerem E. Managing cystic fibrosis: strategies that increase life expectancy and improve quality of life. Am J Respir Crit Care Med. 2011 Jun 1; 183 (11): 1463–71. DOI: 10.1164/rccm.201009-1478CI.
  5. Whiting P, Al M, Burgers L, Westwood M, Ryder S, Hoogendoorn M, et al. Ivacaftor for the treatment of patients with cystic fibrosis and the G551D mutation: a systematic review and cost- effectiveness analysis. Health Technol Assess. 2014 Mar; 18 (18): 1–106.
  6. Mayer M. Lumacaftor-ivacaftor (Orkambi) for cystic fibrosis: behind the 'breakthrough'. Evid Based Med. 2016 Jun; 21 (3): 83–6.
  7. Cholon DM, Esther CR Jr, Gentzsch M. Efficacy of lumacaftor- ivacaftor for the treatment of cystic fibrosis patients homozygous for the F508del-CFTR mutation. Expert Rev Precis Med Drug Dev. 2016; 1 (3): 235–43.
  8. Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. 2014 Sep 15; 23 (R1): R40–6.
  9. Smirnikhina SA, Lavrov AV. Gennaja terapija nasledstvennyh zabolevanij s pomoshh'ju tehnologii CRISPR/Cas9 in vivo. Medicinskaja genetika. 2016; 15 (9): 3–11.
  10. Hockemeyer D, Jaenisch R. Induced pluripotent stem cells meet genome editing. Cell Stem Cell. 2016 May 5; 18 (5): 573–86.
  11. Maeder ML, Gersbach CA. Genome-editing Technologies for Gene and Cell Therapy. Mol Ther. 2016 Mar; 24 (3): 430–46.
  12. Prakash V, Moore M, Yáñez-Muñoz RJ. Current Progress in Therapeutic Gene Editing for Monogenic Diseases. Mol Ther. 2016 Mar; 24 (3): 465–74.
  13. Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E, et al. Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs. Cell Rep. 2015 Sep 1; 12 (9): 1385–90.
  14. Lee CM, Flynn R, Hollywood JA, Scallan MF, Harrison PT. Correction of the ΔF508 Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator Gene by Zinc-Finger Nuclease Homology-Directed Repair. BioResearch Open Access. 2012; 1 (3): 99–108.
  15. Suzuki S, Sargent RG, Illek B, Fischer H, Esmaeili-Shandiz A, Yezzi MJ, et al. TALENs Facilitate Single-step Seamless SDF Correction of F508del CFTR in Airway Epithelial Submucosal Gland Cell-derived CF-iPSCs. Mol Ther Nucleic Acids. 2016 Jan 5; 5: e273.
  16. Hollywood JA, Lee CM, Scallan MF, Harrison PT. Analysis of gene repair tracts from Cas9/gRNA double-stranded breaks in the human CFTR gene. Sci Rep. 2016 Aug 25; 6: 32230.
  17. Crane AM, Kramer P, Bui JH, Chung WJ, Li XS, Gonzalez-Garay ML, et al. Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Reports. 2015 Apr 14; 4 (4): 569–77.
  18. Bednarski C, Tomczak K, Vom Hövel B, Weber WM, Cathomen T. Targeted Integration of a Super-Exon into the CFTR Locus Leads to Functional Correction of a Cystic Fibrosis Cell Line Model. PLoS One. 2016 Aug 15; 11 (8): e0161072.
  19. Camarasa MV, Gálvez VM. Robust method for TALEN-edited correction of pF508del in patient-specific induced pluripotent stem cells. Stem Cell Res Ther. 2016 Feb 9; 7: 26.
  20. Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013 Dec 5; 13 (6): 653–58.
  21. Smirnikhina SA, Bannikov AV, Lavrov AV. Optimizacija uslovij transfekcii kletochnoj kul'tury CFTE29o- dlja razrabotki redaktirovanija mutacii F508del v gene CFTR. Medicinskaja genetika. 2016; 15 (8): 36–9.
  22. Smirnikhina SA, Bannikov AV, Anuchina AA, Kochergin-Nikitsky KS, Adilgereeva EP, Lavrov AV. Faktory, vlijajushhie na jeffektivnost' CRISPR/Cas9 dlja korrekcii mutacii F508del pri mukoviscidoze. Medicinskaja genetika, 2017; 16 (11) s. 32–7.
  23. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016 Jan 1; 351 (6268): 84–8.
  24. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016; 529: 490–95.
  25. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015 Apr 9; 520 (7546): 186–91.
  26. Schwartz CM, Hussain MS, Blenner M, Wheeldon I. Synthetic RNA Polymerase III Promoters Facilitate High-Efficiency CRISPR- Cas9-Mediated Genome Editing in Yarrowia lipolytica. ACS Synth Biol. 2016 Apr 15; 5 (4): 356-9. DOI: 10.1021/acssynbio.5b00162.
  27. Mefferd AL, Kornepati AV, Bogerd HP, Kennedy EM, Cullen BR. Expression of CRISPR/Cas single guide RNAs using small tRNA promoters. RNA. 2015 Sep; 21 (9): 1683–9. DOI: 10.1261/ rna.051631.115.
  28. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014 Apr; 32 (4): 347– 55. DOI: 10.1038/nbt.2842.
  29. Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods. 2015 Oct; 12 (10): 982–88.
  30. Doyon Y, Choi VM, Xia DF, Vo TD, Gregory PD, Holmes MC. Transient cold shock enhances zinc-finger nuclease-mediated gene disruption. Nat Methods. 2010 Jun; 7 (6): 459–60.
  31. Liu X, Homma A, Sayadi J, Yang S, Ohashi J, Takumi T. Sequence features associated with the cleavage efficiency of CRISPR/ Cas9 system. Sci Rep. 2016 Jan 27; 6: 19675. DOI: 10.1038/ srep19675.
  32. Kuan PF, Powers S, He S, Li K, Zhao X, Huang B. A systematic evaluation of nucleotide properties for CRISPR sgRNA design. BMC Bioinformatics. 2017 Jun 6; 18 (1): 297. DOI: 10.1186/ s12859-017-1697-6.