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The rapidly evolving genome editing techniques are steadily moving from research laboratories to clinical practice. Fundamentally
new methods of editing the genome of human embryos in the early stages of development have been developed. Tools for
correction of genetic disorders in people of any age have also been created. In fact, the doctor is becoming a corrector of
genetic instructions on construction and functioning of the human body. This review generalizes the data on the current state
of genome editing techniques and existing approaches to applying them in clinical practice.
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Genome changes occur constantly in living organisms,
determining the course of their evolution. Man started interfering
in this process thousands of years ago, selecting successfully
cultivated plants and producing breeds of pets. Genetic
engineering, which emerged a little more than half a century ago,
made it possible to create transgenic organisms: gene transfer
between genomes or gene manipulation within a single genome.
The idea of using DNA imported from the outside for treatment
of human genetic diseases originated in the early 1970s [1].
In the 1980s, improvement in gene handling techniques and
creation of eukaryotic vectors opened up a real opportunity for
correction of human genetic material for therapeutic purposes.
However, the first successful result was only reported in 1990
[2]. That same year, researchers used a retrovirus to inject
a working adenosine deaminase (ADA) gene into the cells of
four-year and nine-year old female patients with severe
combined immunodeficiency. From 1993, gene therapy was
regularly used to treat newborns with ADA deficiency, by
delivering the gene into undifferentiated cells of the umbilical
cord blood.

We live in the genomics era, and the term ‘genomic therapy’
is increasingly found in science literature today. Perhaps, the
use of the terms ‘gene therapy’ and ‘genomic therapy’ needs

to be clarified. Since terminology issues are not fundamental,
these terms can either be considered as interchangeable or
one can consider the term ‘genomic therapy’ as a variant of
‘gene therapy’ in which nuclear genome (chromosomal DNA)
changes. The point is that gene therapy may not have anything
to do with chromosome — the delivered gene may operate as
an extrachromosomal element (plasmid) or can be injected in
the form of messenger RNA (mRNA); moreover, mitochondrial
DNA may be subjected to modification.

Between 1989 and 2016, over 2,300 clinical trials had been
conducted worldwide [3]. To date, there are more or less effective
approaches to gene therapy for treatment of over 50 genetically
determined diseases in humans, including severe combined
immunodeficiency [4], hemophilia [5, 6], hemoglobinopathies
[7-13], cystic fibrosis [14,15], achromatopsia [16], Leber’s
congenital amaurosis [17-19], epilepsy [20], osteoarthritis
[21, 22], Parkinson’s disease [23-25], and a wide range of
cancers [26-32].

For the past few years, with the emergence of qualitatively
new directed genome change techniques (ZFNs, TALENS,
CRISPR/Cas9), areas of applications for clinical trials of gene
therapy drugs have skyrocketed in number like an avalanche.
Thanks to the simplicity and accuracy of new techniques
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deployed to introduce changes in the genomic DNA of
eukaryotic cells, a new term ‘genome editing’ even arose —
after all, DNA change may in the future be used not only for
therapeutic purposes but also for less important tasks.

Genomic therapy can be applied for: treatment of hereditary
(usually monogenic) diseases, treatment of diseases caused by
somatic mutations (mostly cancer), and attempts to treat HIV
infections by destroying the copies of the virus integrated into
the genome or receptor genes allowing the virus to enter the
cell. Genomic therapy is one of the variants of personalized
medicine, when the approach used is selected individually to
the patient’s disease (and sometimes even to his genome).

Russia’s Federal Law No. 86-FZ dated 5th July 1996 “On
State Regulation in the Field of Genetic Engineering” defines
gene therapy as a set of genetic engineering (biotechnological)
and medical techniques aimed at making changes in the
genetic apparatus of human somatic cells for the purpose of
treating diseases. With the advent of Federal Law No. 180-
FZ dated 23 June 2016 “On Biomedical Cell Products”, the
number of clinical trials of innovative gene therapy products in
Russia is expected to increase.

Genome editing techniques

Although there are a variety of methods for directed change of
complex eukaryotic genomes, only a few of the methods are
currently used in practice:
a) non-break induced homologous recombination [33];
b) site-specific recombination (recombinase and transposase)
[34, 35];
C) repair induced by site-specific nuclease, where the following
are used as the nuclease:

— artificial (hybrid, designer) nucleases with zinc finger
nucleases (ZFNs) [36-38],

— natural or hybrid endonucleases of gene conversion or
meganucleases (homing endonucleases, HEs) [39],

— artificial (hybrid, designer) nucleases with transcription
activator-like effector nucleases (TALENS) [40],

2010

— natural RNA-guided nucleases (RGNs), in particular,
clustered regularly interspaced short palindromic repeats /
CRISPR-associated nuclease 9 (CRISPR / Cas9) with designer
‘guide’ RNA [41],

— a combination of various nucleases [42-44].

Fig. 1 shows a timeline indicating the evolvement of genome
editing techniques [45].

To date, the most promising techniques are those based
on the use of artificial (so-called hybrid or designer) site-
specific nucleases: ZFNs, TALENs and CRISPR/Cas9 [46].
Although, the term ‘hybrid’ (or ‘designer’) nuclease was initially
fully applied to ‘protein’ techniques ZFN and Talen, today the
CRISPR/Cas9 technique can be confidently categorized under
the same class since the RNA in this system is the designer
component (similarly to the ‘guide’ blocks of the ZF or TALE
domain) (fig. 2) [47].

In general, each of these genome editing tools consists of
three components: ‘guide’ specific to DNA sequence (indicating
where to cut), cutting DNA ‘scissors’ (endonuclease) and the
actually introduced DNA sequence (not always necessary).
Delivery into cells a ‘genetic patch’ (a DNA fragment to be
substituted) is required in those cases where it is necessary
to add or substitute a genomic fragment. However, in some
cases, only part of the sequence needs to be removed.
Table 1 shows the features of the most popular genome editing
systems.

We use the ‘guide’ to indicate endonuclease, where a cut
needs to be made in the DNA molecule. The cut is stitched
usually through intracellular repair systems (such as double-
stranded break repair or homologous recombination).

Since genome editing techniques — based on homologous
recombination, recombinase and transposase — have been
actively used in clinical practice for over 30 years and they are
well described in literature (a Nobel Prize was even awarded
in 2007 for homologous recombination techniques), we will
not delve into details in this review. Rather we will elaborate
on relatively new approaches based on hybrid nucleases and
meganucleases, as well as directed double-stranded break
repair.

type Il CRISPR-Cas cuts

target DNA

2005-2006
CRISPRs contain viral

1987 sequences, cas genes
CRISPRs identified, hypothesis
described

2007

1985-1991
Zinc finger proteins

1996-2003

1979 Use of nucleases such as zinc
Gene replacement finger for genome engineering  TAL effectors;
in yeast cells

CRISPR-Cas-bacterial
immunity system

2009-2010

TALE nucleases

2011
type Il CRISPR-Cas includes tracrRNA

2011
Cas9-is only cas gene needed for type Il
defense function (68)

2012
CRISPR-Cas9 is an RNA-dependent DNA
endonuclease

January 2013

D)

Genome editing

1989-1994

Break repair in the
genome using HDR
and NHEJ 2003 and
further

2003 onward
Increased use of
ZFNs in genome
engineering

The Cas9-RNA complex mediates site-specific

1985-1986

Human genome editing via
homologous repair

genomic editing in human cells and other
eucaryotes

2010 onward

Increased use of TALENS in genome

engineering

Fig. 1. Timeline indicating the evolvement of some genome editing systems (Doudna, Charpentier [45])
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Guidance of nuclease using zinc fingers (ZFNs)

Small domains stabilized by one or more zinc ions and known
as ‘zinc fingers’ were identified around the middle of the 1980s
(for the first time as part of Xenopus laevis transcription factor
TFIIA). These domains can bind DNA, RNA, proteins and
lipids effectively and quite specifically [48]. It turned out that
a zinc finger specifically binds a triplet of nucleotides. If 3-6
zinc fingers with known specificity are combined into a single
protein, sufficiently accurate recognition of DNA sequence in
9-18 base pairs can be achieved. Here, any endonuclease
(the most commonly used is non-specific endonuclease and
Fokl catalytic domain from Flavobacterium okeanokoites which
introduces a single-stranded break) is added to the zinc fingers,
you get targeted endonuclease. To get a double-stranded
break, it is necessary to create two such enzymes recognizing
neighboring regions on opposite DNA strands (fig. 2).

Since the beginning of the 2000s and up till now, zinc-finger
systems had been successfully used in a wide range of practical
modifications of genomes both on plant and animal models,
and on therapeutic approaches (table 2). The advantage of the
method is the versatility of its nuclease targeting technique.
The disadvantages include the relatively high complexity of
genetic engineering assembly of the enzyme gene; the need
to create two enzymes for each of the DNA strands; toxicity
associated with lack of specificity of this type of systems [49];
risk of immunogenicity of foreign proteins [50]. In this regard,
the use of zinc-finger systems is gradually being replaced by
new approaches.

Hybrid meganucleases

In 2003, Epinat et al. proposed a genomic editing technique
based on the so-called meganucleases [39] (fig. 2).
Meganucleases were found in archaea, bacteria, phage, yeast,
algae and some plants, and they are endodeoxyribonuclease —
small proteins, mirror monomers or homodimers, characterized
by a very long double-stranded DNA recognition site: from
about 10 to 40 base pairs. Usually, a site of such length is
seen only once in the genome or even never. For example, the
I-Scel meganuclease recognition site, which is 18 base pairs in
length, theoretically occurs once in the genome, exceeding the
length of the human genome by 20 times. Typically, they form
a part of introns or transposable elements of the genome. The
biological function of meganucleases is unclear.

Representatives of the LAGLIDADG meganuclease family,
found in the mitochondria and chloroplasts of unicellular
eukaryotes, are the most widely used tool for genomic editing.
Advantages of the technique involve the fairly high site-
specificity and spontaneous dimer assembly. The disadvantage
— high limitation on impact site selection.
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TALEN (transcription activator-like effector nucleases) technique

The history of development of the TALEN system is connected
with the study of the Xanthomonas bacteria genus. The reason
for the long-term study of this group of bacteria was their
pathogenic effects on crops, including tomatoes, peppers, rice
and others. It was found that Xanthomonas secrets regulatory
proteins — transcription activator-like effectors (TALE) —
into the plant cell cytoplasm. These proteins increase the
susceptibility of cells to the pathogen. Upon further study of
the mechanisms of action of these proteins, they were found to
be capable of binding to DNA and activating the expression of
certain genes, mimicking host cell transcription factors [51, 52].

[t was found that the TALE of a particular site in the DNA is
recognized with the help of a series of small domains, each of
which recognizes a single nucleotide in the site. Researchers
figured out quite quickly the specificity of domains to specific
nucleotides. This allowed to collect from them ‘packs’ precisely
recognizing a specific sequence of bases in DNA.

Thus, the principle of use of TALEN system is similar to
that of the system described above using triplet specific zinc-
finger domains. The only difference is that nucleotide-specific
domains (transcription activator analogs), connected in series
by 12-20 pieces each are used as the ‘guide’, while the proven
Fokl catalytic domain is used as the nuclease. For double-
stranded break, it is necessary to create two such enzymes
(the target landing sites of ‘guide’ TALEs) that should be on
the opposite DNA strands and separated by a site of about
20 base pairs (fig. 2). Advantages of the method: versatility of
the nuclease guiding technique and versatility of the designer
nuclease assembly technique. Disadvantages: high complexity
of genetic engineering assembly of the enzyme gene and the
need for creation of two enzymes for each of the DNA strands.

There are attempts to cross individual elements of different
techniques. For example, hybrids of ‘guide’ TALEs and
meganucleases (megaTALs) are described [42]. There are
attempts to attach enzymes to meganucleases (by one way or
another), which process (for example, destroy) the ends of the
double-stranded break in order to strengthen the mutagenic
effect of this break, and achieve other effects [43, 44].

In 2012, the Nature Methods journal named high-precision
genome editing methods the methodical discovery of the year.
TALEN was included in the methods.

CRISPR/Cas9 (nuclease associated with regularly interspaced
short palindromic repeats) technique

The CRISPR/Cas9 system — proposed just a few years after
TALEN — is a fundamentally different system when it comes
to mechanism for guiding a nuclease to the target. The system
differs from TALEN by the fact that as a ‘guide’, it uses not

Table 1. Composition of the components of the main enzyme of genome editing systems, and some features of the systems

Technique Sequence «Guide» Scissors Double-stranded. break

caused by:

ZFNs Almost none 3-6 zinc finger protein domain Non-specific endonuclease (for Artificial heterodimer

example, Fokl)
HEs Limited set of sites Meganuclease Meganuclease Natural mirror fmonomer or

homodimer

TALENSs Almost none 12-20 pro"(elrl doma_uns from Non-specific endonuclease Artificial heterodimer

transcription activator sequence (for example, Fokl)
RGNs (CRISPR/Cas9) None RNA of abi‘r’ﬁ;gtﬂuc'eo“des Cas9 nuclease Artificial heterodimer
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Fig. 2. Scheme of genomic editing based on zinc-finger hybrid nucleases, meganucl

protein domains but RNA molecule (subgenomic RNA, sgRNA)
of about 40 nucleotides in length, consisting of two parts:
‘guide’ crRNA and adaptor (trans-activating) tracrBNA. CRISPR
elements were discovered in bacterial and archaeal genomes in
the late eighties. It turned out that this is apeculiar bacterial
‘immune system’ element protecting the immune system
against foreign DNA (such as bacteriophage penetration) by
reading from complementary DNA phage of replicates of RNA
molecules, which, in association with specific nuclease, disrupt
the phage genome. Moreover, bacteria are able to remember
the DNA sequences that infected their phages in order to
continue to use them for reading ‘guide’ RNA [53].

[t was also found that the sequence of these ‘guide’ RNAs
can be changed, making them complementary to any DNA
region without losing the nuclease activity of the Cas9 enzyme
(fig. 2). Moreover, the RNA itself can be used as a genetic patch
donor if the corresponding sequence is built in it [54].

At the moment, the CRISPR/Cas9 looks the most promising
genome editing tool because it is versatile, fairly simple to apply
and has high site specificity.

The method has several important advantages: versatility of
the nuclease guiding method; there is no need for genetically
engineered assembly of enzyme — only the ‘guide’ RNA
changes; ability of Cas9 to cut both DNA chains; ability to
integrate a genetic patch into the ‘guide’ RNA. Disadvantage:
potential immunogenicity of a foreign protein.

Genomic therapy algorithms

Therapeutic uses of genome editing systems can be divided
into three groups: 1) changing the genome of gamete/zygote/
blastomeres for the purpose of obtaining a whole organism
from one modified cell (fetal gene therapy); 2) changing the
genome of individual somatic cells selected from the body for
the purpose of subsequently returning the modified cells to the
organism (somatic cell gene therapy); 3) changing the genome
of individual groups (or all) of somatic cells in a multicellular
organism directly (tissue somatic gene therapy).

The first two approaches involve manipulation of cell
cultures in the lab (for which the broadest technology base
is currently being developed). For the third approach, special
systems (preferably tissue-specific systems) should be used
for delivery of genetically engineered constructs into the
body’s cells.
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Genetically engineered constructs

Hybrid nucleases and genetic patches (genetic material
to be replaced) are typically delivered into the cell in the
form of genetically engineered constructs from which the
corresponding RNA and proteins are developed inside the cell.
Variants of direct introduction into the mRBNA cell are described,
particularly for the CRISPR/Cas9 system [55].

A typical genetic construct for site-specific designer
nuclease system contains a nuclear localization signal, an
artificial guide unit (zinc fingers, TALE or ‘guide’ RNA), nuclease
catalytic domain (for example Fokl) and, if required, fragment
to be replaced.

Gene delivery systems

Various viral and non-viral systems recognizing a large number
of potential target tissues (skin, muscle, lung, brain, colon,
spleen, liver, blood cells, and so on.) have been designed
for delivery of ‘therapeutic’ genes or genetic constructs. The
delivery system should ensure high efficiency of absorption
of the genetic construct by the target cells, immunity to
intracellular destruction during transportation to the nucleus
and maintenance of necessary expression level.

Non-viral systems include direct introduction of DNA
constructs into cells and tissues (e.g. electroporation),
liposomes, cationic polymers, and others. Among viral
systems, the most common are systems based on retroviruses,
lentiviruses, adenoviruses, adeno-associated viruses and
herpes simplex virus. Targeted delivery is determined by the
presence of specific molecules (recognizable by target cell
receptors) on the surface of viral particles or on the liposome’s
membrane. Such molecules could be viral capsid proteins,
antibodies to surface cell antigens (inserted into the liposome’s
membrane), folic acid molecule (strongly captured by tumor
cells), and others.

There are much attempts to use viral and non-viral delivery
methods to deliver vectors with hybrid nucleases [56].

Genomic therapy of genetic disorders
As mentioned above, therapeutic approaches based on

addition of genetic material into a cell with the help of viral
vectors have been in use since the beginning of the 1990s.
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Fig. 3. Fetal (A) and somatic cell (B) gene therapy algorithms

These techniques restore synthesis of protein, whose gene
is dysfunctional in both copies in the chromosome. However,
changing or deleting DNA regions has long been an extremely
complex and non-reproducible approach. With the advent
of designer nucleases, researchers began to rapidly develop
methods of directed DNA change directly in the chromosome
structure. At present, there are treatment options fro retinitis
pigmentosa, glaucoma, hemoglobinopathies, muscular
dystrophies (table 2).

Fetal gene therapy is the most actively developing direction.
In 2015-2016, many laboratories in the US, China, UK and
several other countries, as well as some biotech companies,
namely Ovascience (USA), Editas Medicine (USA), etc
announced their plans for modification of human embryo
genomes using CRISPR/Cas9-mediated gene editing
techniques. If for a given pair of individuals, a potentially
healthy genotype cannot be selected from ‘natural’ variants
of embryos, genome editing methods aimed at adding/
correcting a pathogenic allele in the zygote stage can be used.

Liang et al. published their work in April 2015, in which
the CRISPR/Cas9 system was used at the zygote level to
repair a mutant beta-globin gene. Of the 86 zygotes taken for
experiment, only 4 cases were repaired [7].

Somatic gene therapy
“Chemotherapy will be obsolete within 20 years,” said Prof

Jeremy Farrer, head of the Wellcome Trust Sanger Institute.
“We will look back in 20 years time and the blockbuster
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chemotherapy drugs that gave you all those nasty side effects
will be a thing of the past and we will think ‘gosh what an era that
was’. Just as today, we are terrified by examples of electricity
treatment at the beginning of the last century. Understanding
humanity’s genetic code is going to be fundamental to the
medicine of the future. In rare congenital disease, in cancer
and in infections, genomic insights are already transforming
diagnosis and treatment” [57].

Designer nucleases can be used to effectively and
accurately alter the DNA to correct any mutations. This opens
up great opportunities for their use for correction of disorders
that caused tumorigenesis [29, 30]. Variants for use of the
CRISPR/Cas9 system for treatment of sarcoma and lung
cancer have been proposed [31, 32]. For example, correction
or deletion of mutant version of the EGFR gene using the
CRISPR/Cas9 system delivered by virus has been proposed
for lung cancer [32].

Antiviral therapy
HIV gene therapy

The fight against HIV is another direction of therapeutic use
of hybrid nucleases. There are two directions in this fight:
deleting HIV copies from the genome of the HIV carrier and
altering the receptor genes through which the virus penetrates
the T-lymphocytes, particularly the CCR5 gene (table 2).
By destroying the proviral DNA copies in the genome, it is
theoretically possible to completely neutralize the virus and

Table 2. Examples of diseases treated using genomic editing based on designer nucleases

Area of application Mechanism Technique Reference

Genetic eye dieseases Gene disruption TALENs, CRISPR/Cas9 [59-63]

Hemaglobinopathies (sickle cell Insertion of working p-globin gene ZFNs, TALENS, CRISPR/Cas9 [7-13]

anemia, B-thalassemia)

Muscular dystrophy Insertlgn_ of working dystrophin gene or deletion of bad exon in ZENs, TALENSs, CRISPR/Cas9 [64-71]
the existing gene

Oncology Removal or correction of mutant gene variant TALENs, CRISPR/Cas9 [29-32]

HIV Cuttlpg off DNA copies of virus from tlhe hgman genome or ZFNs, TALENS, CRISPR/Cas9 [72-82]
deletion of receptor gene through which virus enters the cell

Hepatitis B virus Virus genome destruction CRISPR/Cas9 [58]

Genetic doping Adding the desired gene allele TALENs, CRISPR/Cas9 [83-87]

Reprogenetics All kinds of changes TALENSs, CRISPR/Cas9 [83-87]
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prevent it from reactivating in the patient’s cells. Another
approach — altering the receptor gene — does not allow the
virus to infect the lymphocytes, thus leading to restoration of
the patient’s T cell population.

One of the problems in the development of gene-editing
antiviral drugs is the ability of the virus to very quickly change
sequence and thereby leave from the ‘guide’, specific to
a particular sequence of the attack site. However, with proper
legislative regulation of the release of modifications of gene
therapy drugs, the release of new ‘antivirus’ can easily overtake
the pace of HIV.

Fight against non-integrated viruses

The research world is also trying to apply genome editing
systems to fight against viruses that do no integrate genetic
material into the cellular genome. Their destruction mechanism
is the same as in the case of HIV, but hybrid nuclease attacks
free viral genome. The use of CRISPR/Cas9 to fight hepatitis B
virus is described in [58].

Non-therapeutic genomic editing objectives
Genetic doping

Genetic doping is a variant of non-therapeutic use of genome
editing to enhance athletic performance. It is no secret that
maximum sports performance is largely determined by the
individual’s genetic component. Athletes from Kenya or Ethiopia
almost always win marathons because genetically determined
glucose metabolism pathway, which determines the ability
to quickly run a marathon, is most developed in the African
population of these countries.

At present, athletic success is linked with over 150
polymorphic positions in the DNA out of which 93 are associated
with endurance and 62 with power load [91]. The spectrum of
potential genes for effecting an influence by means of genomic
editing is very wide: erythropoietin, insulin-like growth factor 1,
human growth hormone, myostatin, endothelial growth factor,
fibroblast growth factor, endorphins, enkephalins, cytoskeleton
protein genes, etc. Approaches have already been developed
for some of these genes, while clinical trials on introduction
of specific alleles into the human genome have been carried
out [85].

Reprogenetics

In classical interpretation, reprogenetics involves the selection
of human embryos with certain properties from the resulting
‘natural’ variants. However, genome-editing technology helps
to expand the features of the approach by creating variants that
are impossible for a given pair of parents [88]. This raises a lot of
ethical issues that mankind is yet to address [90].

Genomic editing: ethical and regulatory issues

Despite the fact that genome editing techniques via designer
nucleases have enormous potential for creation of an effective
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therapy for patients suffering from genetic diseases, their use
for therapeutic purposes is still in its infancy. In this regard,
development of an ethical and legal framework that would
ensure the effectiveness and safety of using genomic editing is
an extremely important factor [92].

While developing such a framework, ethics committees and
authorized government bodies need to establish and clarify
aspects influencing the clinical implementation of genome
editing techniques. These bodies should propose such a road
map for development and implementation of genomic editing
techniques that would allow to safely and quickly transfer the
latest techniques into clinical practice.

Rapid development of innovative medical technologies
does not allow the legislator to work on the legal framework
for the use of these technologies in the same way as before.
Presently, there is a change in the paradigm of legislative
regulation on introduction of new medical technologies from
research laboratory to the clinic. Globalization has made
innovation to be spread around the world literally at the speed
of light. New promising medical technology, no matter where
it has been developed, is inevitably developed and primarily
used in countries with more flexible and liberal laws. Such
countries receive a head start on early introduction of innovative
approaches, despite the risks involved in such approaches.
Many legal restrictions on ‘research-to-medicine’ transition in
certain countries do not make sense because technologies
quickly spread to the rest of the world from ‘research offshores’,
attracting clients to their territory.

From the very start, some countries try to prohibit the use
of designer nucleases for human genome editing. However,
Such countries are forced to quickly change position to avoid
being at the tail of technological leaders. After a Chinese team
announced in 2015 that it has carried out experiments on
editing of genomes of human embryos through the CRISPR/
Cas9 method, a group of British scientists were in February
2016 granted permission to genetically modify human
embryos through CRISPR/Cas9 and related designer nuclease
methods [93].

Public opinion amidst the introduction of techniques in
separate jurisdictions is changing rapidly and starting to put
pressure on their own legal regulation.

CONCLUSION

Genome editing methods created over the last few years are an
improvement of gene therapy approaches existing at the end
of the last century. However, it can be confidently argued that
today the paradigm in the field of genomic medicine is shifting.
The beginning of the second decade of the 21st century
witnessed several technological breakthroughs with a strong
synergistic effect — improvement in directed cell differentiation
techniques, considerable reduction in cost, routine application
of genome sequencers and creation of the described genome
editing systems. All of these combined will inevitably give birth
to new-quality personalized genomic medicine in the next 3-5
years. Directed genome alteration techniques will be a new tool
for doctors.
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