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REVIEW   EVOLUTION OF INFECTIONS
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ВОЗНИКНОВЕНИЕ НОВЫХ ИНФЕКЦИЙ В XXI ВЕКЕ И СПОСОБЫ 
ИХ ИДЕНТИФИКАЦИИ С ИСПОЛЬЗОВАНИЕМ 
ВЫСОКОПРОИЗВОДИТЕЛЬНОГО СЕКВЕНИРОВАНИЯ (NGS) 

Каждое новое инфекционное заболевание может быть серьезным вызовом для современной медицины. Измене-
ние окружающей среды, вырубка тропических лесов, таяние льдов в Антарктике, увеличение плотности населения 
и повсеместное использование антибиотиков — все это факторы, провоцирующие появление новых патогенов. 
Эпидемии гриппа, вызываемые новыми штаммами вируса; респираторные синдромы, вызываемые новыми коро-
навирусами; вспышки инфекций, причиной которых является гемолитическая кишечная палочка; возникновение 
резистентных к антибиотикам супербактерий — примеры того, какие опасности могут поджидать человечество. 
В число первоочередных мер, которые необходимо предпринять для противодействия новым патогенам, входит раз-
работка способов их быстрой и точной идентификации. В обзоре рассмотрены случаи возникновения в XXI веке 
новых инфекционных агентов, а также проанализированы возможность и перспективы использования для выявления 
и идентификации новых патогенов методов высокопроизводительного секвенирования (next generation sequence).
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водительное секвенирование, коронавирус, вирус гриппа,  горизонтальный перенос генов, антибиотикорезистентность
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EMERGENCE OF NEW INFECTIONS IN THE 21ST CENTURY AND 
IDENTIFICATION OF PATHOGENS USING NEXT GENERATION SEQUENCING

Each new emerging infection may become a big challenge to the medical community. Changing environment, tropical 
deforestation, melting of the Antarctic ice, growing population density and uncontrolled use of antibiotics provoke emergence 
and evolution of pathogens. Epidemics caused by new strains of the influenza virus, respiratory syndromes associated with 
coronaviruses, outbreaks of hemolytic Escherichia coli infections and antibiotic-resistant superbacteria are hazards to humans. 
Among high-priority measures for pathogen control that are yet to be taken is development of fast and accurate techniques for 
pathogen identification. Our review looks at the cases of new infections registered in the 21st century and explores feasibility of 
next generation sequencing for the detection and identification of new pathogens.
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Risk factors contributing to the emergence of new diseases 

Pathogen-associated factors

Accumulation of mutations in the genome 

Horizontal gene transfer 

Multipathogen infections 

Changing antigenic determinants

Host-associated factors 

Susceptibility to infections

Global transport networks 

Increasing population density

Religious rituals and national traditions 

Bioterrorism

Environment-associated factors 

Changing environmental profile 

Industrial development 

Climate changes 

Errors in healthcare

Animal epidemics

Wars and famine

Outbreaks of infectious diseases are a continuous threat to 
global health. A lot of effort is being put into the identification 
and study of new pathogens, among which are Middle East 
respiratory syndrome coronavirus, Zaire ebolavirus, and South 
American Zika virus. The table below lists factors that contribute 
to the emergence of new pathogens. However, a considerable 
proportion of epidemics are caused by known pathogens, such 
as poliovirus, influenza virus, or vibrio cholerae.

Most outbreaks are caused by purely environmental factors, 
such as climate-related or geographical. However, human 
impact on the environment may also be a contributing factor. 
For example, some zoonotic diseases find their way into human 
communities because a natural habitat of their hosts has been 
destroyed. Aggravated by deforestation of mountain slopes, 
flooding causes outbreaks of cholera and other infectious 
diseases in populated areas. Some “anthropogenic” epidemics 
are directly linked to purposeful manipulations of pathogens. 
Modified in a lab, bioagents may be infectious or capable of 
acquiring virulence genes horizontally and therefore pose 
a serious biological threat. Mechanisms of new pathogens 
emergence are shown on Fig. 1.

Unfortunately, there are no thoroughly elaborated algorithms 
and ready commercial solutions to identify previously unknown 
pathogens. Techniques used to study their properties will vary 
in each individual case. The following review provides a detailed 
description of cases of emerging infectious agents of the 
21st century and prompts a discussion about a possibility of 
elaborating a universal approach to pathogen detection using 
novel sequencing technologies. 

New pathogens of the 21st century: examples and 
mechanisms of emergence

New coronaviruses

The 21st century has already seen the emergence of at least 
9 new pathogens (Fig. 2). In 2002 the global healthcare was 
challenged by a previously unknown atypical pneumonia agent 

that came from China. In November 2002 a farmer died in the 
city of Foshan (Guangdong Province). Although the cause of 
death was inconclusive, it was clear that the patient had been 
afflicted with an unknown dangerous disease. On November 
27, 2002 the Global Public Health Intelligence Network, a 
warning system developed by Health Canada in collaboration 
with the World Health Organization (WHO), picked up reports of 
an infection outbreak in China. Following a short investigation, 
WHO requested further information from China’s authorities. 
However, it was only after the epidemic crossed Chinese 
borders that details became available to the public. In February 
2003 an American businessman died in Hanoi hospital 
after contracting pneumonia in China. The rate of disease 
progression was shocking. By March 15, the term “severe 
acute respiratory syndrome” (SARS) had been coined [1–3]; by 
March 27, its causative agent had been identified as a new 
coronavirus referred to as SARS-CoV [4–6]. From November 
2002 to July 2003, a total of 8 098 patients in 25 countries 
contracted SARS; 774 patients died. In some populations 
[7] and age groups [8] mortality was as high as 40–55 %. 
Further scattered outbreaks of the infection were reported late 
in 2003 and early in 2004 in Singapore, Taiwan, Beijing and 
Guangzhou. All of them were linked to the cases of laboratory 
contamination and virus transmission from animals to humans 
[9], after the ban was lifted to sell palm civets in wet markets 
and serve palm civet dishes in restaurants imposed during the 
atypical pneumonia outbreak [10].

No effective antiviral agents were available at the time of the 
SARS outbreak [11], so basically, the treatment plan included 
supportive care and antibiotics to fight a secondary bacterial 
infection [12]. But due to the unprecedented international 
response, the outbreak was successfully contained [13]. 
Among the measures taken were contact tracing and isolation 
of people with suspected or confirmed SARS [14]. At present, 
SARS-CoV no longer circulates in the human population; 
however, a chance of a new epidemic remains as there are 
natural reservoirs of SARS ancestors, such as bats or other 
mammals [15].

Challenging as it was, researchers managed to identify the 
virus. Clinical specimens collected from patients with SARS 
were studied using cell cultures and molecular techniques. The 
virus was isolated in cell culture and then its 300-nucleotide-
long RNA was detected by “random” polymerase chain reaction 
(PCR). Genetic characteristics of the virus revealed a very 
distant kinship to known coronaviruses (50 to 60 % similarity 
of nucleotide sequences). Based on the identified sequences, 
high sensitivity PCR- and real-time PCR-based assays were 
designed for virus detection. The virus was found in the clinical 
specimens of patients with SARS while the control samples 
came out negative. The sputum of infected patients was also 
found to contain high concentrations of viral RNA (up to 100 
million molecules per 1 mL). Very low RNA concentrations 
were detected in blood plasma of infected patients in the acute 
phase of the disease and in their excrements by the end of 
treatment [4]. In spite of the fact that SARS outbreak was 
contained, SARS-CoV was not the only pathogen to threaten 
humans in the 21st century. 

In 2003 a 7-month old baby presented to a hospital with 
obstructive bronchitis and conjunctivitis. A few tests were run 
to establish the presence of respiratory viruses, but all of them 
came out negative. A group of researchers headed by Lia van 
der Hoek proposed a modified technique for virus discovery 
based on cDNA-amplified fragment length polymorphisms 
(Virus-Discovery-cDNA-AFLP, VIDISCA). This method employs 
reverse transcription PCR (RT-PCR) with subsequent partial 
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Rapid accumulation of mutations in the 
genome of coronoviruses

Horizontal gene transfer (Enterohemorrhagic Escherichia coli, 
bacteria with multidrug resistance)

Evolution of gene functions by human-induced selection 
pressure (bacteria resistant to “last-resort” antibiotics)

Adaptation to the new host (human bocavirus, human 
metapneumovirus) and reassortment (influenza virus)

Recombination and reassortment (influenza virus)

(А)

(B)

Fig. 1. Genetic mechanisms of emergence of new pathogens among viruses (A) and bacteria (B)

cDNA digestion by frequently cutting restriction enzymes. 
The assay results revealed a certain similarity of the 
discovered sequences to the sequences of the already known 
coronaviruses; however the difference between them was still 
sufficient to classify the studied coronavirus as new. Later, the 
virus was termed “human coronavirus NL63” [16]. 

In January 2004, a 71-year old patient from China 
presented to a hospital with pneumonia. Attempts to replicate 
the virus in cell cultures, RT-PCR and direct antigen tests of 
nasopharyngeal aspirates showed the absence of known 
respiratory viruses in the patient. RT-PCR performed to target 
a conserved region of the coronavirus polymerase gene 
confirmed the presence of a coronavirus but attempts to culture 
it failed. Partial sequencing of the viral genome showed that its 
sequence was highly homologous to the sequences of other 
βCoV viruses including HCoV-OC43, but had a different origin. 
This human coronavirus referred to as HCoV-HKU1 was later 
isolated from the aspirate of another female patient [17]. Shortly 
thereafter, the virus was cultured in human ciliated respiratory 
epithelial cells, but on the whole its replication in cell culture still 
remains a difficult task. Since its discovery, HCoV-HKU1 has 
been proved to occur worldwide, and the retrospective analysis 
of stored nasopharyngeal swabs confirms that it can be traced 
back at least to 1995 [18].

In June 2012 the world became aware of the existence of 
a new strain of a human coronavirus. A 60-year old patient 
was suffering from a severe respiratory infection at Dr. Soliman 
Fakeeh Hospital in Jeddah, Saudi Arabia. Standard tests could 
not identify the pathogen. Patient’s sputum samples were sent 
to Rotterdam (Netherlands) where the virus was identified as a 
new coronavirus and termed HCoV-EMC (human coronavirus 
from Erasmus Medical College). The patient died later from 
acute pneumonia followed by kidney failure [19]. Since the 
discovery of the pathogen, a few of its isolates have been 
reported in the literature, various databases or mass media 
under different names. To study the virus, a research group was 
formed consisting of virologists whose major interest was in 
coronaviruses. To avoid confusion, the virus was given another 
name: the Middle East Respiratory Syndrome Coronavirus 
(MERS-CoR), which was approved by its discoverers, WHO 
and Ministry of Health of Saudi Arabia [19].

From June 2012 to February 7, 2014 there were 182 
cases of MERS registered, of which 79 were lethal. According 
to WHO, by June 11 2014 there had been 699 laboratory 
confirmed cases; 209 people died [20]. Statistical reports 
reveal a 3-fold increase in disease prevalence over 4 months 
meaning that the epidemic is still raging. Mortality rates of 
up to 30 % are especially high in patients with comorbidities; 
patients with immunodeficiency or other primary diseases are 
also susceptible to the infection [21, 22]. There is also a serious 
risk of nosocomial transmission [23].

Clinical manifestations of MERS are similar to those of the 
acute viral respiratory infection and include such common 
respiratory symptoms as cough, fever and gastrointestinal 
dysfunction [24] before the onset of pneumonia [21]. Patients 
with MERS also tend to develop acute respiratory syndrome 
(ARS), renal failure, pericarditis and disseminated intravascular 
coagulation [24]. A risk of a pandemic is low since the virus 
is unlikely to effectively transmit between humans [24] and is 
transmitted only through close contact [25], between family 
members [26] or medical workers [27]; nosocomial transmission 
is also possible [28]. Patients with compromised immunity are 
especially susceptible.

The origin of MERS is not fully understood. Perhaps, the 
first transmission was from the camel to the human. 

Over the past decade 4 new coronaviruses have been 
discovered, of which 2 are extremely dangerous; the other 2
were discovered accidentally and their signs are hard to 
distinguish from the signs of common acute viral respiratory 
infections. Our brief review shows that emergence of new highly 
virulent strains is very probable and only requires a couple of 
nucleotide polymorphisms in the viral genome to happen.

Human metapneumovirus 

A new virus was isolated from the samples of 28 patients in 
the Netherlands in 2001. The symptoms of the infection were 
similar to those caused by the respiratory syncytial virus (RSV). 
A few patients were hospitalized; some required mechanical 
ventilation. Viral isolates were cultured in tertiary monkey kidney 
cells. Their cytopathic effect was pretty much identical to that 
of RSV. Electron microscopy of the supernatant of the infected 
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H1N1 (Mexico, 
2009)

NL63 
(Netherlands, 

2003) 

HMPV
(Netherlands, 

2001)

HBoV1 
(Sweden, 

2005)

E. coli 
0104:H4 

(Germany, 
2011)

MERS (Saudi 
Arabia, 2012)

NDM-1 
(India, 2009)

HCoV-HKU1 
(China, 2004)

SARS (China, 
2002)

Fig. 2. Geographic distributions of emerging pathogens in the 21st century

cells detected paramyxovirus-like particles. But the use of 
real-time PCR primer sets for paramyxovirus detection yielded 
no results. Then a decision came to use RT-PCR assays with 
random primers to obtain information on the sequence of 
the unknown virus. Based on the similarity of sequences and 
genomic organization, it was concluded that the studied virus 
was a close relative of the avian pneumovirus. The virus was 
identified as a new member of the Metapneumovirus genus 
and called human metapneumovirus (HMPV) [29]. It was the 
first metapneumovirus capable of infecting humans. Although 
HMPV was discovered in 2001, phylogenetic analysis showed 
that the virus had been circulating in the human population for 
the last 50 years or so [30, 31]. From 7 to 19 % of respiratory 
infections in children who received either inpatient or outpatient 
care were caused by HMPV [32–34]. The literature reports that 
this virus ranks second in frequency among the respiratory 
viruses [35].

Human bocavirus 

The first human bocavirus (hBoV) was discovered in 2005 in 
nasopharyngeal aspirates of 282 Swedish patients with the 
unknown infection of the lower respiratory tract. To remove all 
contaminating RNA from the samples, the latter were treated 
with DNAase prior to conducting RT-PCR with random primers. 
Bioinformatic analysis of obtained sequences revealed the 
presence of a new parvovirus in the samples that was highly 
homologous to bovine and canine parvoviruses (hence the 
name Bocavirus). The new virus was given a name of hBoV1 
[36]. Three other strains of hBoV were discovered in 2010 and 
are now referred to as hBoV2, hBoV3 and hBoV4 [37–39]. 

HBoV1 causes respiratory diseases and is present 
everywhere across the globe accounting for about 19 % of 

all viral infections of the upper and lower respiratory tract in 
humans [40–42]. HBoV1 effectively infects epithelial cells of 
human airways and induces their cytolysis [43–45]. These 
data are confirmed by clinical observations indicating that 
the infection manifests as a respiratory condition. In contrast, 
hBoV2, hBoV3 and hBoV4 colonize the gastrointestinal tract; 
hBoV2 and possibly hBoV3 are associated with gastroenteritis 
[46, 47]. Interestingly, hBoV2 is the only intestinal bocavirus 
isolated from a nasal swab; therefore it may be associated with 
respiratory diseases [48, 49]. Though hBoV1 is found in all age 
groups, it is prevalent in infants of 6 to 24 months old [50, 51] 
and rare in adults [52–56]. Generally, transmission and infection 
occur throughout the year but are more often in winter and 
spring [55, 57–59].

Influenza virus

Another mechanism of pathogen evolution is genome 
recombination. A typical example here is a highly variable human 
influenza virus (IV) with a segmented RNA-genome. When 
several strains invade a host, their RNA segments may reassort 
to produce new pathogenic strains. Adaptive changes occurring 
in two surface proteins (hemagglutinin and neuraminidase) 
of the virus determine its ability to cause pandemics. 

Water birds are a natural reservoir of IV in which the virus 
has evolved into its current state through several adaptation 
stages. Incredible diversity of IV strains is found in anseriformes 
and charadriiformes, including 17 hemagglutinin and 9 
neuraminidase subtypes [60]. Transmission of the virus to land 
birds and mammals has triggered its rapid evolution [61]. Some 
strains of IV circulate in human populations (H1N1, H3N2), pigs 
(H1N1, H1N2), horses (H3N8, H7N7) and dogs (H3N8) [62]. 
Pigs have become a major reservoir for the pandemic strains 
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of the virus because they have receptors for both avian and 
human IV (2,3-sialic acids and 2,6-sialic acids, respectively) 
[63, 64]. Pigs are effective “mixing tanks” for the virus, a source 
of new reassortants that have mixed (recombinant) genomes 
and can cause another pandemic [61].

Pandemics are the most severe manifestation of the 
infection, with a 20–40 % global prevalence rate. One of the first 
documented IV pandemics occurred in 1918 when the deadly 
Spanish influenza took lives of 25 million people worldwide 
[60]. It was followed by the Asian flu (H2N2) in February 1957, 
Hong-Kong flu (H3N2) in 1968, Russian flu (H1N1) in 1977 and 
swine flu (H1N1) in 2009. The latter became the first and so far 
the last pandemic of the 21st century. H1N1 emerged through 
reassortment between the Eurasian swine influenza strain and 
North American triple reassortant H1N2 [65, 66]. In comparison 
with its “evil” ancestor, it is less virulent; however, it still caused 
200,000 and 83,000 deaths by respiratory and cardiaovascular 
complications, respectively [67].

Since the discovery of a new H7N9 strain of avian influenza 
on March 30, 2013, China’s authorities have reported 135 
laboratory confirmed cases of infection, with 45 deaths in 
Shanghai, Anhui, Jiangsu and Zhejiang [68]. The only case 
registered outside China was in Taiwan; however, the patient 
contracted the virus in China [69]. Those were the first cases 
of transmission of H7N9 avian influenza to humans [70, 71]. 
Initially, nonfatal viral infections caused by Н7 strains (H7N2, 
H7N3, H7N5) were observed across Europe and in the USA 
[72]. The only exception in terms of fatality was a death case 
of H7N7 infection reported in 2003 in the Netherlands [73, 74]. 
Interestingly, those outbreaks occurred at the time of the flu 
outbreaks in poultry, but no such pattern was observed for 
H7N9. Cases of H7N9 infection seem to be epidemiologically 
unrelated, but the possibility of virus transmission between 
humans remains [75]. Delayed serologic response in patients 
infected with H7N9 complicates detection of the virus by 
serologic tests [76]. Besides, unlike H5N1, H7N9 infection in 
poultry tends to be latent, which makes identification of its 
source and a route of transmission much harder and increases 
a risk of a pandemic.

Shiga toxin-producing Escherichia coli

Another mechanism contributing to the emergence of new 
pathogens relies on the acquisition of new properties by an 
organism, such as an ability to produce toxins or resistance 
to antibiotics. A consequence of such genetic transformation 
was an epidemic caused by the О104:Н4 strain of the 
enterohemorrhagic Escherichia coli in 2011 in Germany. It was 
the most severe outbreak ever registered caused by shiga toxin-
producing E. coli (STEC): in total, 3 842 cases were reported 
including 2 987 cases of laboratory confirmed gastroenteritis 
(with 18 deaths) and 855 cases of hemolytic uremic syndrome 
(with 35 deaths) [77]. The outbreak started on May 8, reached 
its peak on May 22 and was over on July 4. The outbreak may 
have been halted because people had been warned against 
using contaminated food; however, delivery of contaminated 
products to markets may have also stopped. Allegations about 
the source of the infection were publicly debunked (at first 
cucumbers and cabbages were thought to be contaminated, 
but that was not true) [77]. On June 10, German authorities 
announced that infection had come from Egyptian sprouts of 
fenugreek [78]. 

Epidemiologic analysis of the infection initially transmitted 
through food is hard to perform once a pathogen learns to 
transmit between humans. Human-to-human transmission of 

enterohemorrhagic Escherichia coli O157:H7 was observed in 
about 20 % of households with an infected patient who had 
contracted the virus through food [79]. Secondary household 
transmission of the O104:H4 strain between adults was also 
observed in France [80] and the Netherlands [81]; it became 
possible due to the delayed onset of the infection compared 
to the standard incubation time (7 to 9 days for O104:H4). 
Secondary transmissions were observed in Hessen (Germany) 
that lied outside of the epidemic area in the North [82]. 
Investigations proved the facts of household and nosocomial 
transmissions; there was also a case of transmission between 
laboratory staff.

Within a very short time, the О104:Н4 strain isolated in 
Germany was sequenced by a few groups of researchers. The 
first sequence was obtained in the Beijing Institute of Genomics 
from a sample provided by the University of Hamburg. 
Expedited by the use of the Ion Torrent platform, sequencing 
of the bacterial genome only took 3 days. The first annotated 
sequence was published by researchers from the University 
of Goettingen who used the following genome sequencers: 
Flex [83], Ion Torrent [84] and PacBio RS [85]. A combination 
approach based on the used of several next generation 
sequencing techniques yielded higher assembly quality (longer 
read lengths, fewer errors and missed regions, etc.). Sequence 
mapping revealed a similarity between the studied strain and 
4 other strains of enterohemorrhagic Escherichia coli that had 
also caused infection outbreaks, including enteroaggregative 
E. coli (EAEC) isolated from AIDS-stricken patients with chronic 
diarrhea in the 1990s in Central Africa [86]. However, the 
African strain did not contain the Stx2 prophage [84]. Mellmann 
et al. proposed a model of O104:H4 evolution according to 
which the progenitor strain had transformed into O104:H4 
by removing or acquiring mobile DNA elements through 
horizontal transfer [83]: a German variant of the pathogen had 
acquired plasmids that carried fimbriae/pili genes (ААР/I) and 
lost plasmids that carried the genes of TEM-1 and CTX-M-15 
enzymes responsible for developing resistance to antibiotics. 
Comparison of the epidemic strains also revealed extensive 
rearrangements in the isolates, including deletions, insertions 
and inversions, which indicated considerable genomic mobility. 
Researchers also found that it was those structurally different 
regions that contained fragments encoding virulence factors. 

Why was strain O104:H4 so virulent? The study of genome 
and virulence genes showed that this strain had an unusual 
combination of SPEC virulence genes (prophage Stx2, long 
polar fimbriae, tellurite resistance, iron metabolism) and EAEC 
virulence genes (AAF/I, transcriptional regulator AggR, dispersin 
Aap and shigella enterotoxin Set1) [87]. The latter are localized 
to the pAA virulence plasmid [83]. Thus, the virulence of the 
O104:H4 strain is ensured by two different mobile elements, 
prophage Stx2 and plasmid pAA, which is quite unusual. It 
may have been the combination of SPEC and EAEC virulence 
factors that shaped this new extremely dangerous pathogen. It 
causes cytotoxic damage to the intestinal epithelium facilitating 
systemic absorption of shiga-toxin, which may explain the 
high prevalence of hemolytic uremic syndrome in Germany. 
But in spite of 2 antibiotic-resistance genes in O104:H4, the 
epidemiologic situation, in particular mortality rates, could have 
been worse if the virus had had resistance to a broader range 
of antibiotics.

Antibiotic resistance and superbacteria 

Since the first cases reported in the 1980s, strains with 
multidrug resistance (MDR) have become common sources of 
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nosocomial infections [88]. Many countries, including Russia, 
have increasingly witnessed infections resistant to traditional 
antibiotic treatments. It should be noted that major sources of 
infections caused by such pathogens as methicillin-resistant 
staphylococcus aureus, vancomycin-esistant enterococcus 
and other gram-negative bacteria with MDR are intensive care 
units [89].

Carbapenem resistance of gram-positive bacteria poses a 
particular problem. Carbapenems are drugs of choice used to 
treat many infections caused by gram-negative bacteria [90]. 
Extensive use of carbapenems promoted antibiotic resistance 
in bacteria. The most common carbopenem-resistant 
microorganisms are Pseudomonas aeruginosa, Acinetobacter 
baumannii and enterobacteria [91].

Pseudomonas aeruginosa causes acute invasive infections 
in patients with compromised immunity or in critical condition. 
Isolates of P. aeruginosa obtained from patients of intensive care 
units demonstrated resistance to carbopenems in 28–37 % of 
cases [92, 93]. А. baumannii is also one of the major sources 
of nosocomial infections. Initially this pathogen was sensitive 
to imipenem treatment in most medical institutions. But soon 
its strains were rapidly evolving to develop carbopenem 
resistance. At the moment 50–60 % of nosocomial infections 
associated with А. baumannii do not respond to imipenem 
treatment [94, 95]. Many enterobacteria, a broad range of 
beta-lactamase-producing E. coli and strains of Klebsiella 
pneumoniae resistant to carbopenems pose a serious threat 
to patients in intensive care because carbopenems are used as 
last resort antibiotics [96].

The driving force of carbopenem resistance is thought to 
be the extensive use of the third generation cephalosporins, 
aztreonam and ipinem. Emerged in the 21st century, 
superbacteria are totally resistant to any known antibiotics 
and are a serious challenge to modern medicine. Emerging 
pathogens are a product of both acquired resistance genes 
and the activation of “hidden” resistance genes resulting from 
a few significant nucleotide polymorphisms. Such genetic 
modifications are typical for microorganisms. In this light, a 
focus on the bacterial resistome — a sum of all resistance 
genes in the entire microbial community — is a prerequisite for 
effective identification and elimination of pathogens. 

The resistome concept is based on the fact that soil 
actinobacteria and many other microorganisms actively 
produce antimicrobial compounds. It seems obvious that 
in order to survive, a microorganism not only has to develop 
defense against antibiotics: it also needs an ability to produce 
them. As proved by some studied, many resistome components 
emerged long before antibiotics were introduced into clinical 
routine [97]. Metagenomic analysis of ancient DNA samples 
collected in permafrost zones revealed the presence of beta-
lactam-, tetracycline-, and glycopeptide-resistance genes [98]. 
It was shown that modern glycopeptide-producing organisms 
harbor ancient glycopeptide resistance genes (vanHAX). 
Moreover, the VanA protein, one the most important products 
of glycopeptide resistance genes, has preserved its function 
and 3D structure over centuries [99]. In another study, bacteria 
found in caves that had had no contact with the surface for 
over 4 million years proved to be resistant to 14 different 
antibiotics [100]. Genotyping and biochemical assays show 
that resistance genes are present in the microbial pangenome 
regardless of the human-induced selective pressure [100].

Although the independent ancient origin of antibiotic 
resistance genes is evident, humans have largely contributed 
to the formation and transformation of the resistome in its 
current state. Resistance protogenes do not form a stable 

phenotype but are capable of transforming into resistance 
genes when undergoing a mutation or due to contextual 
changes. Mutations of the enzyme facilitating its transition from 
one functional class to another are highly unlikely to occur while 
the expansion of the substrate specificity range in the enzymes 
with retained function is very probable. Structural studies 
demonstrated the evolutionary proximity between lincosamides 
and aminoglycoside nucleotidyltransferases and polymerases, 
and this allows for a supposition that progenitor polymerases 
were resistance protogenes that later evolved into antibiotic-
modifying genes [101]. 

Conserved structural elements and biochemical 
mechanisms detected in a similar way indicate that protein 
kinases and protein acetyltransferases share common ancestors 
with resistance protogenes from which aminoglycoside 
resistance genes were derived [102, 103]. Moreover, resistance 
genes themselves can function as resistance protogenes. 
For example, aminoglycoside acetyltransferase acc(60)-la-
cr ensures resistance to quinolones [102]. The ancestral 
enzyme acc(60)-la ensures resistance to kanamycin (which is 
an aminoglycoside); mutations of its two amino acid residues 
Trp102Arg and Asp179Tyr turned to be sufficient to extend 
its substrate specificity to include a number of quinolone 
antibiotics, such as ciprofloxacin, without losing aminoglycoside 
acetyltransferase activity. 

The frequency of resistance protogenes in the resistome 
is unknown. To be considered clinically significant, these 
protogenes have to undergo a series of important evolutionary 
events. However, the examples above show that enzymes 
have a potential to include more substrates in their “profile” and 
might contribute to the emergence of new resistance genes. 

Similar to resistance protogenes, silent resistance genes 
cannot form a resistant phenotype in their current structural 
state. Unlike protogenes, these genes can be detected in the 
resistome based on the homology between their sequences 
and the sequences of known resistance genes. For example, 
two antibiotic-sensitive strains of Citrobacter freundii isolated 
before antibiotics entered the clinical setting contain AmpC 
beta-lactamase genes [103]. Mutations that trigger AmpC 
expression in these strains induce resistance to broad-
spectrum cephalosporins. The wild type of Salmonella enterica 
cultured in the enriched growth-supporting medium is sensitive 
to streptomycin and spectinomycin. However, the same strain is 
resistant to both drugs when cultured in nutrient-poor medium 
due to the activation of aminoglycoside adenyltransferase gene 
aadA [104]. Overexpression of aadA from a plasmid resulted in 
streptomycin resistance (the minimum inhibitory concentration 
of streptomycin increased). Thus, a total expression level of a 
resistance gene may be critical in the formation of a resistant 
phenotype.

If a mutation is seen as a driving force of evolution, then 
horizontal gene transfer is a magic wand that can transform 
the inactive resistance gene into a fully functional one by 
increasing the number of gene copies or changing the context 
that ensures gene expression under a strong promoter. Having 
become a component of a mobile element, resistance genes 
discover an opportunity to spread throughout the entire 
microbial pangenome where they can pick up further mutations 
reinforcing their function and expanding the range of possible 
enzyme substrates in response to the environmental selection 
pressure. 

Staphylococcus aureus with its variety of genes capable 
of horizontal transfer in human pangenome is a perfect 
illustration of their role in antibiotic resistance: mobile 
elements account for 15–20 % of its genome, including 
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bacteriophages, pathogenicity islands, plasmids, transposons, 
and staphylococcal cassette chromosome mec [105]. 
Accumulation of these mobile elements is a result of selection 
pressure, but the element source is bacteria that once 
co-existed with Staphylococcus aureus. While details of 
interactions between pathogens and commensual bacteria 
remain largely unclear, we are coming to realize that major 
reservoirs of resistance genes available to pathogens are 
harbored by the human microbiome [106]. Thus, metagenomic 
libraries that include samples of intestinal microbiomes 
of infants, children and teenagers report resistance to 14 
antibiotics [107]. Moreover, all libraries report resistance to 
tetracycline, trimethoprim, trimethoprim sulfamethoxazole, 
D-cycloserine, chloramphenicol, and penicillin, and some of 
them report resistance to aminoglycosides, glicylcyclines and 
beta-lactams. About 3 % of all antibiotic resistance genes listed 
in those libraries are associated with mobile elements, such 
as transposons or integrons [108]. The effect of antibiotics 
on intestinal microbial communities is actively studied. For 
example, some antibiotics, especially metronidazole and beta-
lactam, negatively affect the variety of microorganisms in the 
gastrointestinal tract [108]. If any bacterial taxon starts to 
dominate the gut flora, it increases a risk of bacteremia [109]. 

 Members of the human gut flora can acquire resistance 
genes horizontally (from farm animals to humans through food). 
A group of researchers discovered that 42 unique resistance 
genes had been transmitted to the human microbiome by 
agricultural isolates, which allows for the assumption that the 
microbial flora of farm animals, as well as waste, may contribute 
to the development of drug resistance in human pathogens 
[109]. Mobile elements that carry antibiotic resistance genes 
are widely spread in the microorganisms we consume with food 
[109–113] and are a potential source of resistance genes for 
the human microbiome. Unfortunately, overuse of antibiotics on 
farms is not rare. Monitoring on Chinese pig farms [114] showed 
that antibiotic resistance genes were found almost everywhere 
in the soil, as the latter was fertilized with the manure of pigs 
who had received antibiotic-containing food. Tests of pathogen-
containing agricultural samples revealed a 3-fold increase in the 
number of unique resistance genes compared to the controls, 
including resistance to clinically significant antibiotics, such 
as macrolides (mphA and erm), cephalosporins (bla-TEM and 
blaCTX-М), aminoglycosides (aph and aad) and tetracycline 
(tet). The number of transposases in the genomes of pathogens 
found in pig manure and soil samples was 90 000 and 1 000 
times higher, respectively, than in the controls. The number 
of transposases positively correlates with the frequency of 
resistance genes (especially tetracycline resistance genes) in 
the microbiome of agricultural products.

To sum up, all mechanisms of emergence of new pathogens 
can fall into two categories: 

1. host-to-host transmission of the known pathogen 
accompanied by an acute infection in the new host due to 
the lack of adaptation of the latter (a good example here is a 
cytokine storm); 

2. emergence of new pathogenic properties in the known 
biological agents usually acquired through horizontal gene 
transfer. 

Identification of new pathogens using traditional 
methods. Difficulties 

So far, a lot of technologies and commercial applications have 
been developed for pathogen detection and identification. They 
can “spot” nucleic acids and antigens typical for a pathogen. 

Although many of those methods are claimed to meet the 
strictest requirements for sample preparation, processing rate, 
accuracy and reliability, only a few of them can be used in real life 
circumstances, especially in the field [115]. Biohazard detection 
systems must ensure timely identification and confirmation of 
biological risk factors straight in the sample yielding as few false 
positive or false negative results as possible. Such systems 
must be able to detect a modified or an unknown pathogen. 
Devices for biohazard detection must be portable, easy to use 
and capable of detecting several or even dozens or hundreds 
of factors simultaneously [115].

Currently there are a few diagnostic methods that meet 
most of the listed requirements but there is not a single tool 
that would meet all of them. Unlike chemical detectors capable 
of scanning a sample for health-threatening amounts of 
chemical compounds, low-sensitive biological detectors rarely 
“spot” potentially hazardous amounts of pathogens straight 
in the sample; what is more, the sample must be preprocessed 
before the test. Diagnostic systems based on nucleic acid 
amplification are generally more sensitive than antibody-
based systems [115]. For example, PCR assays can detect 
individual molecules of microbial nucleic acids within a relatively 
short time [116–118]. However, this technique still requires 
thorough preparation of the sample and cannot directly detect 
toxins or infectious agents deprived of nucleic acids (such as 
prions) [115].

Specificity is a no less important parameter of a diagnostic 
method, as there is always a need to minimize background 
signals or false positive results when processing a complex mix 
of organic and inorganic compounds. High levels of competitor 
antigens or DNA fragments in the sample may render the test 
nonspecific. High sensitivity of PCR-based assays may actually 
be their drawback in the case of contaminated samples 
yielding false positive results due to the presence of various 
substances, including humic acids and heme, that inhibit 
polymerase activity. 

Another important requirement for a diagnostic method 
is its reproducibility, which may be influenced by a number of 
factors, including reagent stability or varying test conditions. 
The impact of these factors may be reduced by introducing 
standards for sample collection and subsequent analysis. 

In addition to the requirements listed above, diagnostic 
methods must be capable of performing a multiplex analysis, 
i.e. detect more than one bioagent in a sample. Samples 
often contain a mix of toxins, bacteria, viruses, etc. Besides, 
there may also be genetically or antigen-modified elements, 
previously unknown microorganisms or emerging strains of 
well-known pathogens, all of which are extremely difficult to 
detect. It should be noted that even regular bioagents are hard 
to detect in contaminated samples. Human specimens (blood 
or excrements), food, water, or air samples are “difficult” objects 
for diagnostic systems. For example, anticoagulants, leukocyte 
DNA or heme components inhibit PCR [115, 119, 120], 
which leads to false negative results. Fat in food samples and 
concomitant bacteria in excrements may distort immunoassay 
results. Therefore, biological agents must be isolated or purified 
before the analysis, which means longer tests and renders field 
diagnostics impossible. 

Sample composition determines conditions for its storage 
and transportation. Air and water samples must be brought 
to concentrations allowing preliminary detection of target 
molecules. Air samples must be transformed to a liquid state 
because the majority of diagnostic tests work with liquids. 
Sample volumes and transportation are also important 
especially when it comes to living organisms. Sometimes to 
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assess the risk, the viability of a pathogen must be confirmed; 
in this case standard genetic or immunological assays will be 
of no use. 

Over the past years, methods for detection and identification 
of unknown pathogens have been actively developed and 
profusely funded [115]. The most promising technology among 
them is next generation sequencing.

Next generation sequencing. Basic principles

The term “next generation sequencing” (NGS) is used to 
describe a group of methods for parallel sequencing of multiple 
fragments that unlike Sanger sequencing allow reading 
massive volumes of primary DNA sequences in one go. NGS 
has become a truly universal method of describing genomes 
of living organisms. Currently NGS-based applications are 
actively used in scientific research, molecular systematics, 
bioengineering, cellular and molecular biology, and in routine 
human activities: medical practice, criminology, selection, etc.

There are two major groups of NGS types: sequencing 
of multiple preamplified DNA fragments and single-molecule 
sequencing. 

All sequencing methods based on template amplification 
share the same principle regardless of the reagents or devices 
used. First, a library is prepared by DNA fragmentation and 
adapter ligation. Then, library fragments are immobilized 
on beads or flow cell surface; each fragment is amplified by 
emulsion bead PCR or bridge PCR, respectively. Specific 
primers are then hybridized to adapter sites and sequencing 
is performed. This process is accompanied by signal emission. 
Signal type depends on the platform used. The signal is 
registered by the device that converts it into a nucleotide 
sequence. 

Pyrosequencing or 454-sequencing was a pioneer NGS 
variation. The idea behind it is as follows: when a nucleotide 
is added to an elongating complementary sequence, light 
is emitted. [121–123]. Another NGS type, semiconductor 
sequencing, is based on measuring changes in pH values 
caused by H+ release that occurs during formation of 
phosphodiester bonds as nucleotides are added to a 
complimentary strand [124–127]. Another NGS variation is 
sequencing by ligation: a sequencer captures a fluorescent 
signal emitted during complimentary strand synthesis in a flow 
cell into which a mixture of fluorescently labeled nucleotide 
probes (octamers) and a DNA ligase are pumped [128]. The 
most common type of NGS is sequencing by synthesis which 
employs fluorophore labeled reversible terminator nucleotides. 
Amplification is performed inside a porous flow cell into which 
reagents for DNA synthesis are pumped [129]. After cluster 
PCR amplification, clusters of clonal DNA copies are generated 
to the cell surface, with each cluster corresponding to one 
read. High cluster density (up to 800–900 thousand per mm2) 
provides sufficient throughput in terms of the obtained data. 
Clusters of DNA molecules are then sequenced according to 
the principle similar to the Sanger method [130, 131]. 

Among the drawbacks of NGS based on the use of 
preamplified DNA fragments are sequencing errors in 
homopolymer regions or regions that contain single nucleotide 
polymorphisms; problems related to repeat resolution; 
dependence of read accuracy on GC-content of DNA 
fragments, etc. [132–134]. All of these factors dictate the need 
for alternative sequencing techniques, such as single-molecule 
sequencing. 

One of its types is based on the use of DNA polymerase 
to catalyze incorporation of a fluorescently labeled nucleotide 

into the elongating strand. Incorporation is captured by a highly 
sensitive CCD-camera. Once the nucleotide is incorporated, 
the fluorescent label is removed and fluorescence goes back 
to normal values. Then another nucleotide enters the DNA 
polymerase active site and the cycle is repeated [135]. Phage 
φ29 DNA polymerase used in this technique of can process 
up to 10 nucleotides per second. This technique can be used 
to sequence long DNA molecules — up to 10 000–20 000 
base pairs and already has a number of practical applications 
[136–142].

Another type of single-molecule sequencing uses 
electrophoretic cells equipped with a nanopore membrane. 
Single stranded DNA molecules are threaded into the pore; 
as the molecule enters the pore, the amount of current that 
passes through it changes [113]. Based on the properties of 
this change, such as duration and amplitude, it is possible 
to accurately identify the nucleotide that enters the pore at a 
particular time point. So far, this approach has been implemented 
in one commercial sequencer (MinION by Oxford Nanopore 
Technologies, UK) distributed under the early access program 
[143]. The advantage of this sequencing type is a possibility to 
run long reads without having to use expensive equipment. Its 
major drawback is high error rates (12–20 %) [144]. However, it 
is becoming clear that nanopore sequencing is an increasingly 
promising technique for metagenomic studies, sequencing 
of short genomes, identification of viral and bacterial agents. 
Nanopore sequencing has been successfully used as a 
diagnostic test to detect Ebola and Chikungunya viruses. It is 
also a good technique for conducting metagenomic research 
of bacterial resistome and sequencing large-scale genomes 
[145–147].

NGS-based strategies for pathogen identification 

The main group of pathogens that pose the biggest threat to 
humans includes bacteria and viruses. Other pathogens such 
as fungi or protists are no less dangerous but do not normally 
require a genetic analysis to be identified. At present, the major 
technique for describing a diversity of microorganisms in the 
sample is metagenomic analysis. It has become possible and 
even routine due to NGS. The diversity of microorganisms 
found in the sample can be described using two different 
strategies: targeted sequencing of selected marker regions and 
large-scale (whole) metagenome sequencing. 

The first method is simple, cheap and takes less time 
for sample preparation, sequencing and data processing. 
However, it has its limitations and can only be used to detect 
the presence of different organisms in the sample. In contrast, 
the second method yields a full profile of the microbial 
community, including the description of its genetic properties. 
Usually regions of the 16S rRNA gene of prokaryotes and 18S 
rRNA gene of eukaryotes are recommended as marker regions 
for processing metagenomic samples; for fungi samples ITS 
regions are recommended [148–150]. However, the task may 
dictate the use of other markers. For example, for generating a 
resistome profile, regions of antibiotic resistance genes should 
be selected. 

The second method is costly and time consuming. 
However, whole genome sequencing provides a basis for 
further assembly of a reference genome [148]. These are three 
ways to analyze the obtained data (fragments of microbial 
DNA contained in the studied metagenomic sample). The first 
method involves comparison of marker sequences with known 
sequences obtained from databases that describe genomes 
of similar organisms [151–153]. The second method involves 
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clustering of all reads into taxon groups (based on their similarity 
to known whole genome sequences, etc.) [154–157]. The third 
method is based on the assembly of the obtained contigs into 
genes or even genomes de novo [158, 159]. Whole genome 
sequencing and methods of data interpretation are highly 
useful tools for pathogen identification as they help to identify 
individual genes in the sample. 

Both approaches have their own drawbacks and 
advantages. Sequencing of individual regions is fast and cost-
effective and gives a general idea of the genetic diversity of 
the sample, while whole metagenome sequencing provides 
full information on pathogen determinants (metaresistome etc). 
Most of the obtained data will not be of any particular value but 
what is important is that sequencing will yield a comprehensive 
list of genetic elements that determine epidemiologic properties 
of pathogens contained in the sample. It might be possible 
to use a reagent kit instead of conducting whole genome 
sequencing that consists of several hundreds of oligonucleotide 
sequences complementary to important epidemiologically 
significant determinants. The use of the kit would speed up 
metagenomic processing and cut its costs. Then total/whole 
genome sequencing could be used in some difficult cases 
following preliminary pathogen detection to provide a detailed 
genetic profile of a mixed sample or isolated pathogen. 
	
Specific aspects of NGS-based identification of viruses 
and bacteria 

State-of-art NGS techniques are ideal when there is a need 
to analyze, identify and describe genomic sequences of 
isolated prokaryotic organisms. NGS certainly holds promise 
as an effective tool for identification of unknown pathogens in 
mixed samples. However, there may be a difficulty in detecting 
horizontal transfer factors in samples containing prokaryotic 
organisms; drawing up accurate genomic profiles for individual 
members of such microbial communities may also be an issue. 
To minimize these issues when working with chromosome-
bearing genetic elements, a better coverage of chromosome 
sequences of individual metagenomic components by single 
reads is required. 

Quality of data obtained through sequencing is largely 
determined by sample preparation. Its significance becomes 
obvious once we take a closer look at the aspects of virus 
identification. Identification of new viruses is a challenging task: 
viral nucleic acids are very hard to isolate from junk nucleic 
acids. Extraction of nucleic acid from virus particles obtained 
through ultrafiltration of large DNA viruses results in sample 
contamination by the so-called gene transfer agents: nonviral 
DNA packed in viral capsids [160]. Identification of small 
highly variable RNA viruses is complicated by the presence of 
contaminating amounts of rRNA in nucleic acid samples. There 
are certain difficulties with primer selection: primers need to be 
universal and allow amplification of at least genus-specific viral 
cDNA [161]. One of the popular techniques used to identify 
emerging viruses relies on a modified PCR assay (VIDISCA) 
followed by NGS (Fig. 3) [162]. Below is a brief description of 
the technique.

First, the sample is selectively enriched with viral nucleic 
acid; as part of the procedure, the sample is centrifuged to 
remove residual cells and mitochondria. The sample is also 
treated with nucleases to remove interfering chromosomal and 
mitochondrial DNA and RNA from lysed cells. Adding RNAsa 
to the sample causes degradation of cellular RNA, but the 
viral nucleic acid remains intact, because it is packed inside a 
capsid. Then nucleases are inactivated and viral nucleic acids 

are extracted from the sample. RNA is reverse transcribed into 
cDNA and a complementary strand is synthesized from viral 
RNA or genomic DNA [163]. Double stranded DNA is then 
digested by frequently cutting restriction enzymes (HinP1-I and 
Mse-I). The cleaved DNA is then ligated to Hinp1-I and MseI 
adaptors with complementary overhangs. Target molecules 
are amplified using primers specific to each adaptor. For 
further selective amplification primers with a supplementary 
base (G, A, T or C) are used. In total, 16 combinations of 
primers are used; each sample is compared to the negative 
control (uncontaminated serum or plasma and supernatant 
of noninfected cultures). PCR products specific for infected 
samples are then cloned and Sanger-sequenced.

This technique is quite difficult to perform and its throughput 
is relatively low; reproducibility may also be an issue [163]. 
Currently, a modification of the method is attempted based 
on a combination of PCR with NGS. The amplified fragments 
are conjugated to nanoparticles and sequenced by massive 
parallel sequencing. The original method was based on the 
pyrosequencing technology; the license for it was acquired by 
Roche. But a serious problem arouse related to a low number 
of clean reads due to the presence of ribosomal RNA (rRNA ) in 
the sample. Therefore, the method yielded poor results. There 
are a few approaches that can help to reduce the amount of 

Isolation of nucleic 
acid fraction

Viral RNA

Synthesis of cDNA

Complementary strand synthesis

Endonuclease cleavage

Adapter ligation

Preamplification

Emulsion PCR-based 
clonal amplification

Fig. 3. Identification of new viruses using VIDISCA and next generation sequencing
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contaminating rRNA in the samples such as the use of specially 
designed primers that do not anneal to rRNA, low-frequency-
cleavage restriction enzymes and specific oligonucleotides 
for blocking cDNA synthesis on rRNA [163]. Although these 
“patches” significantly reduce the number of amplified rRNA 
fragments, the obtained result is still far from being perfect, as 
viruses are detected in only 50 % of contaminated samples. 
However, if the problem of rRNA removal from the samples 
is fully solved, the technique will certainly be one of the most 
time-saving and accurate tools ever used for the detection of 
previously unknown viruses. 

CONCLUSION

Emergence of new bacteria and viruses that pose a serious 
threat to global health is inevitable and dictated by evolution. 
Viruses and bacteria are highly adaptive due to a number of 
molecular mechanisms at their disposal, such as recombination, 
reassortment and horizontal gene transfer. Coupled with a 
capacity to produce abundant progeny and human-induced 

selection pressure, these mechanisms expedite emergence 
of new pathogens. Considering close international contacts 
among humans, pathogen spread to new areas aggravating 
the risk of epidemics. However, this risk may be reduced by the 
development of new methods for infection control (vaccination, 
medications, new sterilization technologies), and techniques for 
pathogen identification that must take into account the genetic 
adaptive capacity of pathogens. Literature review revealed 
that there are no ready commercial solutions for identification 
of organisms with new pathogenic properties. Traditional PCR 
and immunoassays have a number of limitations. One of the 
most promising methods used to identify a broad range of 
pathogens is next generation sequencing.

Next generation sequencing is one of the few available 
methods that can detect a pathogen, generate its genetic 
and epigenetic profile, and provide information on the 
microbial community inhabiting the sample. Rapid evolution 
of sequencing techniques makes the analysis easier, cheaper 
and faster. Enhanced with a variety of software applications, 
next generation sequencing becomes an effective tool for 
identification of previously unknown pathogens. 
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