
5BULLETIN OF RSMU   4, 2017   VESTNIKRGMU.RU| |

REVIEW   LIQUID BIOPSY

М. Л. Филипенко1,2

ДИАГНОСТИЧЕСКИЙ ПОТЕНЦИАЛ ВНЕКЛЕТОЧНОЙ ДНК 
В КАЧЕСТВЕ ЖИДКОСТНОЙ БИОПСИИ

Внеклеточная ДНК (вкДНК) была обнаружена в плазме крови человека в середине прошлого века, однако ее диа-
гностический потенциал стали по-настоящему активно изучать лишь в последние несколько десятилетий в связи 
с накоплением данных о геноме и эпигеноме клетки человека в норме и при различных патологиях и бурным развитием 
методов анализа ДНК и ее модификаций. Использование вкДНК для диагностики заболеваний принято называть жид-
костной биопсией. В настоящем обзоре рассматриваются история открытия вкДНК, современные представления об 
источниках вкДНК в организме и перспективные направления применения анализа вкДНК в медицине. В частности, 
чаще всего жидкостную биопсию используют в онкологии, но метод актуален и для таких направлений, как прена-
тальная диагностика, прогноз отторжения имплантатов органов и прогноз сепсиса.
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Filipenko ML1,2

DIAGNOSTIC POTENTIAL OF CELL-FREE DNA AS 
A LIQUID BIOPSY MARKER

Cell-free DNA (cfDNA) was discovered in human blood plasma as early as the middle of the 20th century, but it was not until a 
few decades ago that knowledge of human genome and epigenome in health and pathology became sufficient and methods 
of nucleic acid analysis became more advanced to encourage active research of the diagnostic potential of cfDNA. The use 
of cfDNA as a diagnostic biomarker is conventionally referred to as liquid biopsy. The following review tells a story of cfDNA 
discovery, summarizes contemporary views on cfDNA sources inside the body and touches upon possible prognostic and 
diagnostic applications of cfDNA analysis in medicine, specifically in cancer and prenatal screening, prediction of implant failure 
and sepsis development.
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In a broad sense, liquid biopsies are methods that have long 
been used in clinical routine to test for the presence of tumor 
markers in the blood plasma, measure activity of liver enzymes 
or concentrations of thyroid hormones, etc. However, this term 
has acquired a new meaning reflecting the hypothesis that 
nucleic acids of specialized body cells, including tumor and 
fetal cells, can find their way into biological fluids, from which 
they can be isolated in order to obtain clinically important 
information about their sources of origin. Considering the 
rapid development of methods for nucleic acid analysis and 
the accumulated knowledge about human genome and 
epigenome in health and pathology, analysis of DNA released 

into the systemic circulation (cell-free DNA, cfDNA) appears to 
be a very promising diagnostic tool. It is this type of cfDNA 
assays that is currently referred to as liquid biopsy. 

Although the following review focuses on cfDNA, we would 
like to emphasize that various types of RNA can also provide 
diagnostically relevant information and be analyzed along with 
DNA.

Study of cfDNA: milestones 

Cell-free DNA was first discovered in the peripheral blood plasma 
of humans by Mandel and Métais in 1948 [1]. Unfortunately, 
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their work went unnoticed by the research community. Until 
the 1970s the majority of studies of cfDNA were carried out in 
patients with systemic lupus erythematosus and rheumatoid 
arthritis [2–4], focusing on the presence of free DNA in the 
blood serum. Those studies entailed significant advances 
in the methods of cfDNA quantification that were improved 
through the use of natural autoantibodies to various DNA types 
obtained from patients with systemic lupus erythematosus. 

In 1977 Stroun et al. went on to give what has become 
a classical definition of cell-free and circulating DNA [5]. In 
the same year Leon et al. proposed a radioimmunoassay 
for cfDNA quantification based on the use of labeled DNA 
as antigens and the serum of patients with systemic lupus 
erythematosus as a source of antibodies [6]. In 93 % of healthy 
participants, cfDNA concentrations in the blood serum ranged 
from 0 to 50 ng/ml. Those values were taken as reference for 
healthy individuals, which was perfectly legitimate considering 
the evidence obtained later using state-of-the-art techniques. 
In Leon’s study concentrations of cfDNA in the blood serum 
of half of cancer patients (the main group) were considerably 
higher, ranging from 50 to 5000 ng/ml. After radiation therapy 
cfDNA concentrations went down in 66 to 90 % of patients 
with lymphoma, lung, ovarian, uterine and cervical cancers 
and in 16 to 33 % of patients with glioma, breast tumors and 
colorectal cancer. Patients with increased or unchanged post-
radiation cfDNA levels showed no response to treatment. Later, 
detection of tumor-specific mutations, microsatellite instability 
and methylation of DNA circulating in the bloodstream 
confirmed its tumor-derived origin [7–9].

The end of the 20th century saw the invention of quantitative 
real-time polymerase chain reaction, a universal and well-
reproducible technique for cfDNA quantification [10, 11], which 
also made it possible to determine ratios of differently sized 
cfDNA fragments in the sample [12]. Another milestone was 
marked in the history of cfDNA exploration by the employment 
of high-throughput sequencing for whole-genome analysis of 
specificity and quantification of cfDNA [13, 14].

How do nucleic acids get into the systemic circulation?

In their pioneer study Leon et al. concluded that tumors are 
not the only source of cfDNA circulating in the blood, as 
only half of their cancer patients had elevated plasma levels 
of cfDNA while the other half did not. Recently there has 
been evidence that concentrations of free DNA in the cells 
increase within the first few hours or days following cytotoxic 
chemotherapy administration; the DNA then disappears within 
a week. In pathology associated with increased cell death or 
tissue damage (hepatitis, sepsis or trauma), blood plasma 
concentrations of cfDNA also go up. These facts support 
the assumption that necrosis, apoptosis and perhaps a few 
other types of cell death largely determine concentrations of 
nucleic acids in the blood plasma, especially in cancer patients. 
Mechanisms of nucleic acid release from the cells might vary 
in different cancer types. In 1989 Stroun et al. hypothesized 
that in cancer patients cfDNA is released into the bloodstream 
mainly by tumor cells [15]; this hypothesis was corroborated by 
the discovery of oncogenic mutations in cfDNA isolated from 
the blood plasma of patients with leukemia [16] and pancreatic 
cancer [7].

Studies of fetal cfDNA demonstrated that its half-life is 
16.3 min [17]. These findings were extrapolated onto all types 
of cfDNA and confirmed by further experiments conducted 
in animals who received DNA injections [18]. Analysis by gel 

electrophoresis revealed that cfDNA is fragmented and has 
characteristics similar to those of DNA isolated from apoptotic 
cells; it was also found that a small proportion of cfDNA is 
represented by high-molecular-weight fragments [19]. Jahr et 
al. believed that the presence of such fragments should be 
associated with necrosis of tumor cells. It should be noted 
though that this conclusion has been seriously questioned 
recently: while analyzing cfDNA obtained from cancer patients, 
Diehl et al. discovered that its high-molecular-weight fragments 
do not contain tumor-specific mutations often found in short 
(less than 200 b.p.) cfDNA fragments [20]. The researchers 
hypothesized that high-molecular-weight cfDNA could originate 
from phagocytosed necrotic cells. 

According to the commonly shared belief, necrosis triggers 
release of high-molecular-weight cfDNA into the bloodstream. 
However, this type of cell death also induces production of 
large amounts of DNA packaged into typically sized 
nucleosomes [21, 22]. Normally nucleosomes are released 
from the cells 24 to 48 hours after apoptosis induction or 
12 hours after its early signs begin to show [23]. Although the 
majority of nucleosomes released into the circulatory system 
are effectively eliminated by the liver, some of them can 
still be found in the blood or other bodily fluids. Elevated levels 
of nucleosomes in the blood can result from increased cell 
death induced by degenerative, autoimmune, inflammatory, 
ischemic, or toxin-mediated conditions and traumas, or 
from the presence of malignant tumors, when elimination 
mechanisms are overloaded or compromised. Thus, circulating 
nucleosomes can originate from the cells dying from apoptosis 
or necrosis or a combination of various forms of cell death, 
depending on the type and intensity of the stimuli and the 
energy state of the cell. 

Another source of cfDNA in the systemic circulation is high-
molecular-weight DNA of neutrophils. Neutrophil extracellular 
traps (NETs) are generated by activated neutrophils during 
NETosis [24], when nuclear constituents, including DNA 
molecules, citrullinated histones and granule enzymes, such as 
elastase, are released into the extracellular environment. Once 
released, they form web-like structures capable of capturing 
bacteria, ensuring high concentrations of antibacterial 
substances. It has become clear in the recent years that 
NETs can be “built” under sterile proinflammatory conditions, 
such as thrombosis, cancer, systemic lupus erythematosus, 
atherosclerosis, and diabetes. Formation of neutrophil traps 
can be stimulated by chemokines, such as interleukin 8 
(CXCL8) [25, 26], and growth factors, such as granulocyte 
colony-stimulating factor (G-CSF) [27] and transforming growth 
factor-β. Depending on the microenvironment, expression of 
the aforementioned factors in the tumor can be stimulated 
above normal levels, i.e., NETosis may indicate the presence 
of a malignant tumor. In turn, NETs can stimulate tumor growth 
and angiogenesis, promote metastases and tumor-induced 
thromboembolism [28].

It is possible that cfDNA is excreted by exosomes. This 
mechanism is described in detail in the works by Peters and 
Reclusa [29, 30].

Finally, cfDNA can be a product of active metabolic secretion 
[31–33], coming from a complex it forms with glycolipoproteins 
and RNA. In their in vitro cell culture experiment, Aucamp et 
al. demonstrated a statistically significant correlation between 
the rates of glycolysis and cfDNA release. Fragments of 
released cfDNA were about 2,000 b. p. long, which ruled 
out the possibility of their apoptotic or necrotic origin. So 
far mechanisms and contribution of active secretion into the 
general pool of cfDNA remain understudied. 
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Fig. 1. The blood plasma of a pregnant woman contains fetal cfDNA that can be used in non-invasive prenatal testing for aneuploidies or monogenic diseases

Cell-free DNA as a diagnostic tool

Prenatal screening

Following the discovery of fetal cfDNA in the maternal blood 
plasma [34], it was proposed to use this nucleic acid for 
noninvasive prenatal testing (NIPT) for fetal aneuploidies. 
Fetal cfDNA appears in the maternal blood in weeks 5–7 of 
pregnancy [35]. In the first trimester about 10 % of the total fetal 
cfDNA originate from apoptotic trophoblast cells. It was shown 
that data yielded by high-throughput sequencing are accurate 
enough to establish a clinical diagnosis [36]. A number of 
companies (Natera, Verinata, Sequenom, etc.) started to offer 
NIPT on a commercial basis. Analysis of fetal cfDNA in the 
maternal blood plasma is also actively used for early diagnosis 
of monogenic diseases [37, 38]. Fig. 1 exemplifies the use of 
fetal DNA in prenatal screening.

Free DNA is sometimes found in the follicular fluid and 
therefore used as a prognostic marker of embryo quality and 
success of in vitro fertilization (IVF) [39]. Having analyzed a total 
of 55 samples, Shamonki et al. discovered that embryonic DNA 
is present in spent culture media in concentrations ranging from 
2 to 642 ng/µL [40]. Their findings were consistent with the 
results of preimplantation genetic screening of trophectoderm 
biopsy samples. If validated further, this method can make 
prenatal screening easier and improve IVF effectiveness. 

Organ transplantation

Cell-free DNA can be used as a biomarker of organ transplant 
rejection. This clinically important application of cfDNA is based 
on the assumption that graft cells will die in case of rejection 
and their DNA will be released into the bloodstream of the 
recipient. 

Survival rates for lung transplant recipients are poor 
compared to other types of transplants: diagnostic tests often 

fail to differentiate between infection and rejection. In their 
study de Vlaminck et al. observed a correlation between the 
levels of donor cfDNA in the recipient’s blood and the results of 
invasive rejection tests (AUC = 0.9). Moreover, the researchers 
demonstrated that cfDNA analysis can detect the presence of 
such pathogens as cytomegalovirus, herpesvirus HHV6 and 
HHV7 and adenovirus which are often underdiagnosed but 
frequently present in patients with lung transplants [41].

Bloom et al. observed a correlation between concentrations 
of donor cfDNA in the blood plasma of kidney transplant 
recipients measured by targeted high-throughput sequencing 
and allograft rejection status established histologically [42]. The 
researchers proposed the following reference values for donor 
cfDNA concentrations: levels < 1 % of total cfDNA indicate the 
absence of active rejection, levels > 1 % indicate a probability of 
active rejection. CareDx Clinical Laboratory has already started 
marketing the AlloSure dd-cfDNA assay for clinical diagnosis of 
acute rejection of kidney transplant.

Prediction of sepsis

Sepsis is a systemic inflammatory response to infection caused 
by pathogen dissemination through the bloodstream from the 
primary focus of infection to other organs and tissues. It is a 
common cause of death. Predicting sepsis outcome is difficult 
in patients with trauma or after surgery; new clinical biomarkers 
are needed to reduce mortality. 

One of the forms of innate immunity is response of the 
organism to compromised blood sterility manifested as formation 
of neutrophil extracellular traps. The abovementioned NETs are 
constituted of high-molecular-weight cfDNA associated with 
histones, proteases and a few other proteins. A prospective 
pilot study enrolling 45 patients with multiple trauma (8 patients 
were excluded from the study after it had started) revealed an 
association between the initially high blood plasma levels of 
cfDNA/NETs (> 800 ng/ml) that increased again on days 5–9 of 
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Fig. 2. Key applications of liquid biopsy and cfDNA analysis in oncology

hospital stay and subsequent sepsis, multiple organ failure and 
death [43]. In contrast, dynamics of C-reactive protein levels did 
not differ significantly between patients who developed sepsis 
and those who did not. Further clinical validation is required to 
decide on the prognostic value of cfDNA/NETs. 

A recent study by Hamaguchi et al. conducted in mice 
demonstrated that cfDNA concentrations are elevated in 
early stages of sepsis, rendering cfDNA an early biomarker 
of this condition [44]. In Hamaguchi’s experiment cfDNA 
was hypothesized to originate from necrotic cells and not 
neutrophils. If proved right by further research, this hypothesis 
may change the understanding of mechanisms of cfDNA 
production in sepsis. 

 
Cancer

Development and progression of cancer are associated with 
accumulation of somatic mutations. Analysis of such mutations 
is increasingly used for diagnostic, prognostic and therapeutical 
purposes. At present, genetic profiles of solid tumors are 
determined by studying the DNA obtained from surgical 
resections or biopsies. Obviously, these invasive interventions 
cannot be frequently performed on the same patient. Besides, 
results of such DNA analysis may not reflect the heterogeneity 
and evolution of the whole tumor, since only a small piece of 
tissue incised at a particular time point is obtained for analysis. 
In contrast, tumor cfDNA isolated from the blood plasma or 
urine can provide sufficient data on the genetic features of the 
primary tumor or its metastases and help to track its genomic 
evolution. The past three years have seen over a thousand of 
published works about aspects of cfDNA study in patients with 
various types of cancer. The diagnostic potential of cfDNA as a 
biomarker of cancer is described in [45–47].

There are 3 approaches to the use of cfDNA for cancer 
diagnosis (Fig. 2).

The first relies on measuring tumor cfDNA in the blood 
of a patient to establish accurate diagnosis or monitor tumor 
load. Although a lot of research works have convincingly 
demonstrated that blood cfDNA concentrations are elevated in 
cancer patients, cfDNA quantification assays are still not used 
routinely. Perhaps it is because of the absence of a standard 
protocol for cfDNA isolation and quantification and the low 
specificity the method has in cancer patients, compared to 
patients suffering from other diseases. Yet, as early as 1977 
Leon et al. demonstrated that a short half-life makes cfDNA 
a very promising biomarker of tumor load [6]. Many protein 
tumor markers routinely used to monitor patient’s response 

to treatment (PSA, CA125, CEA, αFP) stay in the systemic 
circulation for up to several days [48], while the half-life of cfDNA 
is only a few hours [49, 50]. Detection of somatic mutations 
and epigenetic modifications during quantification of tumor 
cfDNA can improve the diagnostic value of the method [51–
53]. Targeted high-throughput sequencing for quantification of 
tumor-derived cfDNA following surgical resection of colorectal 
tumors can be successfully used to accurately predict cancer 
recurrences (HR = 18; 95 % CI 7.9–40.0; p < 0.001) [54].

Notably, the work by Tie et al. [54] demonstrates that 
detection of driver somatic mutations in cfDNA can facilitate 
the choice of treatment and that cfDNA can be used in 
screening tests for cancer. A recent study by Bettegowda et 
al. showed that tumor cfDNA is found in 73, 57, 48 and 50 %
of patients with localized colorectal, gastroesophageal, and 
pancreatic cancer and breast adenocarcinoma, respectively 
[55]. It was shown that tumor cfDNA is found in more than 
75 % of patients with metastatic tumors of the pancreas, ovaries, 
colon, bladder, breast, skin and liver. Further improvement of 
the method can increase its accuracy, while reasonable cost 
can make it attractive for the use in clinical practice. 

The third approach pertains to cfDNA analysis of tumor-
specific epigenetic modifications. In 2016 Margolin et al. [56] 
discovered that ZNF154 of cfDNA has a highly conserved 
hypermethylation profile typical for various cancer types. 
If validated, this pan-cancer biomarker will be an effective 
diagnostic tool. In 2016 another pioneer work by Lehmann-
Werman et al. demonstrated that total methylation of cfDNA 
circulating in the human blood plasma can be “mapped” onto 
DNA fractions corresponding to specialized human cells [57]. 
It means that using high-throughput sequencing, an organ 
or tissue (or a cell type) can be identified that is affected by 
pathology and produces high amounts of specific cfDNA, given 
that there are age-related or other reference intervals for total 
cfDNA concentrations in the blood plasma. This method has 
a potential to become an effective non-invasive screening tool 
facilitating early diagnosis of cancer and may prove be useful 
in the development of targeted panels for high-throughput 
sequencing, as it can help to reduce screening costs. 

Positions of nucleosomes are another epigenetic 
modification relevant for cfDNA analysis. They influence the 
structure of cfDNA fragments released during apoptosis. 
Patterns of cfDNA fragmentation were described in a number 
of works, including a 2016 work by Snyder et al. who reported 
that deep cfDNA sequencing allows identifying positions of 
nucleosomes and transcription factors, specific for certain 
cell types [58]. The researchers showed that cfDNA of healthy 
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donors resembles most that of lymphoid and myeloid cells. 
At the same time, sequencing of cfDNA obtained from the 
blood plasma of patients with various cancer types matched 
the studied nucleic acids to 76 corresponding cell lines. It was 
concluded that the method could be used for detection of 
acute or chronic pathology of human organs and tissues. 

Although the importance of non-invasive screening for 
cancer can hardly be overestimated, only one such assay has 
been registered with Food and Drug Administration so far. It is 
the cobas EGFR Mutation Test v2 (Roche Molecular Systems, 
USA, registered in 2016) for detecting somatic activating 
mutations of EGFR in the blood plasma. 

Owing to the use of cfDNA analysis, a few interesting clinical 
cases were made known. For example, in their work Smith et 
al. obtained discordant results between cfDNA analysis and 
diagnostic fetal karyotyping [59]. Later, it became clear that 
the patient had colorectal adenocarcinoma. The researchers 
emphasized the need for a very accurate interpretation of 
anomalies discovered during cfDNA analysis and advocated 
the use of a multidisciplinary approach. 

Other applications

Increased concentrations of cfDNA in the blood plasma and 
serum of patients with autoimmune diseases, especially 
patients with systemic lupus erythematosus, have been 
demonstrated in many research studies [4, 60, 61]. However, 
there are still no unambiguous recommendations as to how to 
use cfDNA quantification assays in clinical routine.

Ershova et al. [62] studied concentrations of cfDNA and 
8-Oxo-2'-deoxyguanosine (8-oxodG) in cfDNA of patients with 
acute psychotic disorders. Elevated levels of 8-oxodG were 
found in cfDNA and lymphocytes (FL1-8-oxodG). Considering 
that the ratio of cfDNA to FL1-8-oxodG reflects the level of 
apoptosis in the damaged cells, the scientists concluded that 
an increase in the number of cells with damaged DNA in body 
tissues may have an impact on the etiology of acute psychosis. 

Breitbach et al. proposed to monitor cfDNA concentrations 
in athletes [63]. Long endurance exercises may lead to chronic 
inflammation that in turn stimulates continuous slow release 
of DNA from apoptotic or necrotic cells. Thus, cfDNA may be 
used as a biomarker of overtraining. To validate this hypothesis, 
prospective studies are necessary that would be conducted 

in heterogeneous groups of athletes performing controlled 
physical exercise. 

Chronic obstruction of the lungs characterized by 
unproductive neutrophilic inflammation in the respiratory 
tract accompanies progression of cystic fibrosis and leads 
to death. Upon contact with a pathogen or following their 
long activation, neutrophils release the aforementioned traps 
containing large amounts of DNA. NETs were long considered 
a defensive tool because of their antibacterial and antifungal 
properties. However, their excessive formation is associated 
with autoimmune diseases. Marcos et al. conducted analysis 
of cfDNA (putatively NETs-derived DNA) and showed that 
cfDNA concentrations correlate positively with pulmonary 
obstruction, colonization of the lungs by microorganisms, and 
chemokines levels in patients with cystic fibrosis and in model 
mice [64]. Thus, neutrophilic inflammation in the lungs in cystic 
fibrosis may be associated with considerably increased cfDNA 
concentrations typically observed in NETosis and may cause 
lung dysfunction. If this assumption is valid, it renders possible 
the use of DNAse, antiprotease and other NETosis inhibitors as 
therapeutical agents against cystic fibrosis. 

Finally, differential methylation of the promoter of PPARγ 
found in cfDNA circulating in the human blood plasma may 
correlate with different degrees of severity of liver fibrosis in 
patients with non-alcoholic fatty liver disease [65].

The above list is by no means exhaustive. It is constantly 
expanding as methods for quantification and structural analysis 
of cfDNA in various biological fluids are being improved.

CONCLUSION

A globally growing interest in cell-free DNA reflects a great 
potential of non-invasive liquid biopsy as a diagnostic and 
monitoring tool that can be used in patients with cancer, 
stroke, myocardial infarction, autoimmune disorders, traumas, 
and pregnancy complications. So far, there is no clear 
understanding as to whether cfDNA has specific functions in 
the cell or the organism and what its molecular mechanisms 
are in health and pathology. These questions can be elucidated 
by biologists, bioinformatician, specialists who study evolution 
of humans, and clinicians. Besides, inclusion of liquid biopsy 
into clinical routine requires optimization of technologies at all 
stages of the diagnostic process. 
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