ВЗАИМОСВЯЗЬ ИЗМЕНЕНИЯ ЭКСПРЕССИИ МИКРОРНК И МРНК В КЛЕТКАХ ЛИНИИ НТ-29 В УСЛОВИЯХ ГИПОКСИИ

С. А. Нерсисян¹, А. В. Галатенко^{2,3}, Д. В. Мальцева^{1,4} , Ю. А. Ушкарев¹, А. Г. Тоневицкий^{1,4}

¹ Национальный исследовательский университет «Высшая школа экономики», Москва, Россия

² Московский государственный университет имени М. В. Ломоносова, Москва, Россия

³ Московский центр фундаментальной и прикладной математики, Москва, Россия

⁴ Институт биоорганической химии имени М. М. Шемякина и Ю. А. Овчинникова, Москва, Россия

Гипоксия возникает в различных патофизиологических процессах, включая прогрессирование опухолевых заболеваний и метастазирование. Один из механизмов молекулярного ответа клеток на гипоксию состоит в рекрутировании специфичных микроРНК, регулирующих экспрессию своих геновмишеней. Целью работы было оценить изменения экспрессии микроРНК и их генов-мишеней в клеточной линии колоректальной аденокарциномы человека HT-29 в ответ на гипоксию с помощью интегрированного секвенирования микроРНК и мРНК. Для моделирования условий гипоксии клетки обрабатывали хлоридом кобальта (II). Было обнаружено достоверное изменение экспрессии 16 человеческих микроРНК, шесть из которых (hsa-miR-18a-5p, hsa-miR-22-3p, hsa-miR-27a-5p, hsa-miR-182-5p, hsa-miR- 215-5p, hsa-miR-425-5p) имели статистически значимую долю генов-мишеней с противоположным направлением изменения экспрессии. На основании биоинформатического анализа взаимодействий дифференциально экспрессированных факторов транскрипции и микроРНК была построена возможная регуляторная сеть, основыми узлами которой оказались HIF-1α, p65, с-Мус и Egr1 (кодируемые генами *HIF1A, RELA, MYC и EGR1*).

Ключевые слова: гипоксия, микроРНК, мРНК, транкриптом, секвенирование, эпителий кишечника, HIF-1α, HT-29

Финансирование: работа выполнена при финансовой поддержке Российского научного фонда (соглашение № 17-14-01338).

Вклад авторов: С. А. Нерсисян и А. В. Галатенко — обработка данных секвенирования, биоинформатический анализ, функциональный анализ генов, построение регуляторной сети взаимодействий, подготовка рукописи статьи; Д. В. Мальцева — работа с клетками, подготовка образцов для секвенирования, подготовка рукописи к публикации; Ю. А. Ушкарев — обсуждение результатов, рецензирование текста статьи; А. Г. Тоневицкий организация исследования, анализ полученных результатов, подготовка рукописи статьи.

Соблюдение этических стандартов: исследование проведено с соблюдением этических принципов Хельсинкской декларации Всемирной медицинской ассоциации.

Для корреспонденции: Диана Васильевна Мальцева ул. Вавилова, д. 7, г. Москва, 117321; dmaltseva@gmail.com

Статья получена: 26.10.2020 Статья принята к печати: 22.11.2020 Опубликована онлайн: 07.12.2020

DOI: 10.24075/vrgmu.2020.074

INTERRELATION BETWEEN MIRNA AND MRNA EXPRESSION IN HT-29 LINE CELLS UNDER HYPOXIA

Nersisyan SA¹, Galatenko AV^{2,3}, Maltseva DV^{1,4} ⊠, Ushkaryov YuA¹, AG Tonevitskiy AG^{1,4}

¹ Faculty of Biology and Biotechnology, HSE University, Moscow, Russia

² Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia

³ Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia

⁴ Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia

Hypoxia accompanies various pathophysiological processes, including progression of tumors and metastasis. One of the mechanisms of molecular response of cells to hypoxia implies recruitment of specific miRNAs that regulate the expression of their target genes. This study aimed to evaluate the hypoxia-induced change in expression of miRNAs and their target genes in the HT-29 human colorectal adenocarcinoma cell line with the help of integrated miRNA and mRNA sequencing. To simulate hypoxia, the cells were treated with cobalt (II) chloride. We registered a significant change in expression of sixteen human miRNAs. Six of them (hsa-miR-18a-5p, hsa-miR-22-3p, hsa-miR-27a-5p, hsa-miR-182-5p, hsa-miR-425-5p) had a significant proportion of target genes that had the expression changing in the opposite direction. Based on the bioinformatic analysis of interactions between differentially expressed transcription factors and miRNAs, we built a possible regulatory network with its main hubs being HIF-1α, p65, c-Myc, and Egr1 (encoded by the *HIF1A*, *RELA*, *MYC* and *EGR1* genes).

Keywords: hypoxia, miRNA, mRNA, transcriptome, sequencing, intestinal epithelium, HIF-1a, HT-29

Funding: the work was supported financially by the Russian Science Foundation (agreement #17-14-01338).

Author contribution: SA Nersisyan and AV Galatenko — sequencing data processing, bioinformatic analysis, functional gene analysis, building the regulatory network of interactions, manuscript preparation; DV Maltseva — cell culturing work, preparation of samples for sequencing, manuscript preparation for publication; YA Ushkaryov — discussion of the results, article text review; AG Tonevitsky — research organization, analysis of the results, article manuscript preparation.

Compliance with ethical standards: the study was approved by the Ethics Committee of Amur State Medical Academy (Protocol № 10 dated November 20, 2019); the study conformed with the guidelines for the medical research involving human subjects. Voluntary informed consent was obtained from all the participants.

Correspondence should be addressed: Diana V. Maltseva

Vavilova, 7, Moscow, 117321; dmaltseva@gmail.com

Received: 26.10.2020 Accepted: 22.11.2020 Published online: 07.12.2020

DOI: 10.24075/brsmu.2020.074

Гипоксия играет роль в развитии и течении ряда патологических состояний, таких как сердечно-сосудистые [1] и опухолевые заболевания [2]. Использование моделей гипоксии *in vitro* — информативный подход для изучения реакции на гипоксию на молекулярном и клеточном уровнях. Одна из традиционных моделей состоит в имитации гипоксии с использованием химических агентов, вызывающих активацию сигнальных путей гипоксии. Использование CoCl₂ — один из самых распространенных вариантов индукции химической гипоксии, поскольку вызывает прямую и долгосрочную стабилизацию индуцируемых гипоксией факторов 1 и 2 (HIF-1, HIF-2) [3].

МикроРНК представляют собой короткие некодирующие РНК, основная функциональная активность которых заключается в посттранскрипционном подавлении генов [4]. Обычно одна микроРНК имеет десятки генов-мишеней, при этом 3'-UTR какого-либо гена может содержать места связывания для сотен микроРНК [5]. Было показано, что взаимодействия между микроРНК и их генами-мишенями играют важную роль в межклеточной коммуникации [6] и патогенезе множества заболеваний, включая различные типы опухолей [7, 8].

В ряде исследований изучали роль и функциональную активность клеточных микроРНК в условиях гипоксического стресса. Обнаружено, что некоторые микроРНК, такие как miR-210 или miR-27, изменяются гипоксией во многих клетках, дифференциальная экспрессия miRNA и их таргетома обычно зависят от механизма индукции гипоксии и типа клеток [9]. Установлена также связь между паттернами изменения экспрессии микроРНК, вызванными гипоксией и опухолевыми заболеваниями: большая часть микроРНК, ассоциированных с опухолями, может быть затронута гипоксией [10].

Целью данной работы было исследовать влияние гипоксии на транскриптом и профиль микроРНК в клетках линии колоректальной аденокарциномы человека HT-29 и выявить потенциальные ключевые молекулы, участвующие в ответе на гипоксию.

МАТЕРИАЛЫ И МЕТОДЫ

Культивирование и обработка клеток

Клетки линии колоректальной аденокарциномы человека HT-29 (АТСС; США) культивировали в среде McCoy's 5A (Thermo Fisher Scientific; США), содержащей 10% фетальной бычьей сыворотки (Thermo Fisher Scientific; США). К питательной среде добавляли пенициллин (100 Ед/мл) и стрептомицин (100 мг/мл). Клетки рассаживали в шестилуночные планшеты в количестве 4 × 10⁵ клеток в лунку и культивировали в увлажненной атмосфере при + 37 °С и 5% CO₂ в течение 48 ч. Для индукции гипоксии готовили свежий раствор хлорида кобальта (CoCl₂) в воде, добавляли в среду для получения конечной концентрации 300 мкМ и инкубировали в течение 24 ч. Проводили по три биологических повтора как для контрольных, так и для обработанных клеток.

Выделение РНК

Клетки лизировали в Qiazol Lysis Reagent (Qiagen; Германия) для последующей экстракции тотальной РНК с использованием набора Qiagen miRNeasy Mini Kit (Qiagen, Hilden; Германия). Количество выделенной РНК определяли с помощью Nanodrop (Thermo Fisher Scientific; США). Анализ качества выделенных образцов РНК проводили с использованием набора Agilent High Sensitivity DNA Kit (Agilent Technologies; США) и прибора для капиллярного электрофореза Bioanalyzer 2100 (Agilent Technologies; США). Значение параметра RIN (RNA integrity number) для всех образцов было выше 9.0.

Приготовление библиотек и секвенирование

Библиотеки для секвенирования мРНК получали из образцов тотальной РНК с использованием набора Illumina Stranded mRNA Library Prep Kit Illumina (Illumina; США). Каждый образец был секвенирован на Illumina NextSeq 550 для получения 75 нуклеотидных считываний на одном конце.

Библиотеки для секвенирования микроРНК были приготовлены из образцов тотальной РНК с использованием набора NEBNext Multiplex Small RNA Library Prep Kit для Illumina. Каждый образец был секвенирован на Illumina NextSeq 550 для получения 50 однонаправленных считываний нуклеотидов.

Секвенирование мРНК и микроРНК проводили для трех биологических повторов, для каждого из которых было поставлено четыре технических повтора.

Обработка результатов секвенирования

Качество файлов FASTQ оценивали с помощью FastQC v0.11.9 (Babraham Bioinformatics; UK). Один образец из обработанных CoCl₂ репликатов не прошел контроль качества при секвенировании микроPHK. Адаптеры были обрезаны с помощью Cutadapt v2.10 [11]. Полученные последовательности фрагментов мPHK картировали на геном человека (GENCODE GRCh38.p13) с помощью STAR v2.7.5b [12]. Матрицу экспрессии микроPHK получили с помощью пакета miRDeep2 v2.0.1.2 [13].

Глубины библиотек секвенирования были нормализованы с помощью алгоритма Trimmed Mean of M-values (TMM), доступного в пакете edgeR v3.30.3 [14] с фильтрацией фонового шума по умолчанию. Тот же пакет использовали для генерации нормированных матриц экспрессии мРНК и микроРНК в единицах Reads Per Kilobase of transcript per Million mapped reads (RPKM) и Reads Per Million mapped reads (RPKM) и Reads Per Million mapped reads (RPKM) и Reads Per Million mapped reads (RPKM) и соответственно. Полученные значения логарифмировали по основанию 2. Для дальнейшей обработки использовали только высокоэкспрессированные транскрипты, отсекая нижние 5% генов и 50% микроРНК в соответствии с их средними значениями RPKM / RPM.

Оценка дифференциальной экспрессии и перепредставленных сигнальных путей

Анализ дифференциальной экспрессии проводили с использованием DESeq2 v1.28.1 [15], частоту ложных обнаружений (FDR) рассчитывали по методу Бенджамини–Хохберга. Статистически значимыми считали различия с FDR ниже порогового значения 0,05. Анализ перепредставленных сингальных путей проводили с помощью онлайн-сервиса DAVID v6.8 [16].

Предсказание мишеней микроРНК

На первом этапе для предсказания мишеней микроРНК был получен список взаимодействий микроРНК-ген из TargetScan v7.2 [17]. Затем из когорты The Cancer Genome

Atlas Colon Adenocarcinoma (TCGA-COAD) выбирали пары микроРНК–ген с отрицательной корреляцией экспрессии [18]. Исходные матрицы экспрессии микроРНК/мРНК для опухолевых образцов были получены с портала GDC Data Portal (https://portal.gdc.cancer.gov/) и преобразованы в формат RPKM/RPM таблиц с помощью вышеописанной процедуры. Далее рассчитывали корреляцию Спирмена для каждой микроРНК и предсказанного гена-мишени. Пороговые значения 0,05 и –0,1 были установлены на значения FDR и корреляции соответственно.

Построение регуляторной сети взаимодействий факторов транскрипции и микроРНК

Информация о регуляторных взаимодействиях факторов транскрипции и микроРНК была взята из курируемой базы данных TransmiR v2.0 [19]. Полученную сеть взаимодействия строили и визуализировали в редакторе yED Graph Editor (yWorks GmbH; Германия).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Влияние хлорида кобальта (II) на экспрессию генов в клетках линии HT-29

Для химического индуцирования гипоксии клетки линии HT-29 обрабатывали хлоридом кобальта (II) в течение 24 ч. Анализ секвенирования PHK, выделенной из контрольных клеток HT-29 и обработанных хлоридом кобальта, показал статистически значимое изменение экспрессии 2511 генов, кодирующих белки, в 2 и более раза в ответ на гипоксию. Поиск перепредставленных метаболических путей выявил 25 генов, связанных с переключением аэробного метаболизма на анаэробный гликолиз (KEGG pathway hsa00010 «Glycolysis/Gluconeogenesis», FDR = $2,04 \times 10^{-4}$; рис. 1A), а также продемонстрировал активацию сигнального пути HIF-1 (KEGG pathway hsa04066 «HIF-1 signaling pathway», FDR = $4,45 \times 10^{-3}$), задействуя который хлорид кобальта имитирует гипоксию (рис. 1Б). Помимо пути HIF-1, активированными были и несколько других

Α - 15.0 12.5 10.0 7.5 5.0 2.5 SAPDH РКМ PGK1 ENO1 TPI1 РСК2 ALDH3B1 MINPP1 ALDOA ENO3 ALDH1B1 ALDH7A1 ALDH2 PGM1 ADPGK HK1 ACSSZ PGAM1 HKDC1 ENO2 HK2 ALDOC PFKP

Cobalt, rep1 Cobalt, rep2 Cobalt, rep3 Control, rep1 Control, rep2 Control, rep3

сигнальных каскадов, участвующих в ответе на гипоксию, включая NF-кВ [20] и AMPK [21] (приложение 1).

Наиболее перепредставленная категория соответствовала генам, кодирующим белки протеасомных комплексов (КЕGG pathway hsa03050 «Ргоteasome», FDR = 2,02 × 10⁻¹⁶). В частности, 33 гена были значительно активированы в ответ на гипоксию, включая 6 из 6 АТФаз, 11 из 12 субъединиц протеасомы 26S, не обладающих АТФ-азной активностью, 7 из 8 α - субъединиц и 7 из 11 β -субъединиц протеасомы 20S, а также белок созревания протеасомы *POMP* и активаторная субъединица протеасомы *PSME4* (приложение 2). Было отмечено увеличение экспрессии генов UBB, UBC, *UBA52* и *RPS27A* (в 3,1, 8,7, 2,0 и 1,6 раза соответственно), кодирующих убиквитин, активность которого необходима для протеасомзависимой деградации белков.

Детектировалось также изменение экспрессии генов, которые кодируют белки, участвующие в фокальной адгезии: интегрины и ламинины. Так, уровни экспрессии ламининовых субъединиц α 3, β 3, Y1 и Y2 были увеличены в 5,5, 4,6, 3,1 и 4,5 раза. Три из них (α 3, β 3, Y2) могут формировать гетеротример и, таким образом, образовывать ламинин 332, известный также как ламинин-5 [22]. Направление изменения экспрессии субъединиц интегринов различалось: для субъединиц α E, α V и β 1 обнаружено увеличение в 1,8, 2,2, 1,8 раза, в то время как для субъединиц α 1, α 2, α 3 и β 8 снижение уровня экспрессии произошло в 2,3, 2,1, 1,7 и 2,7 раза.

Влияние гипоксии на экспрессию микроРНК и их генов-мешеней

Статистически значимое изменение экспрессии в ответ на обработку клеток хлоридом кобальта было выявлено для 16 микроРНК (табл. 1). Среди них была обнаружена hsa-miR-210-3p, единственная микроРНК, увеличение экспрессии которой показано в ответ на гипоксию почти во всех существующих исследованиях [23]. При этом уровень нескольких подтвержденных мРНК-мишеней hsa-miR-210-3p, вовлеченных в митохондриальный метаболизм и индукцию апоптоза, снижался в ответ на гипоксию : *GPD1L* в 2,3 раза, *CASP8AP2* в 1,7 раза, а *AIFM3* — в 8 раз.

Рис. 1. Дифференциальная экспрессия генов, ассоциированных с гипоксией. А. Гликолиз/глюконеогенез. Б. Сигнальный путь HIF-1

МикроРНК	Средний уровень экспрессии в контроле (RPM)	Изменение экспрессии, разы*	FDR
hsa-miR-210-3p	372,38	2,40	4,01 × 10 ⁻²⁰
hsa-miR-4521	452,54	-2,48	2,31 × 10 ⁻¹⁸
hsa-miR-615-3p	739,12	-1,90	5,30 × 10 ⁻¹⁰
hsa-miR-22-3p	1032,99	1,65	5,21 × 10 ⁻⁶
hsa-miR-425-5p	751,22	-1,44	8,52 × 10 ⁻⁴
hsa-let-7a-3p	631,34	-1,44	2,87 × 10 ⁻³
hsa-miR-32-5p	594,48	-1,43	3,18 × 10 ⁻³
hsa-miR-215-5p	2604,64	1,49	6,61 × 10 ⁻³
hsa-miR-224-5p	4385,37	1,41	0,0123
hsa-miR-182-5p	3935,22	1,49	0,0144
hsa-miR-1260b	550,76	-1,35	0,0187
hsa-miR-1260a	531,53	-1,34	0,0241
hsa-miR-27a-5p	158,10	1,51	0,0317
hsa-miR-30b-5p	1509,37	1,31	0,0317
hsa-miR-10a-3p	2102,20	-1,29	0,0417
hsa-miR-18a-5p	225,40	-1,39	0,0444

Таблица 1. Дифференциально экспрессированные микроРНК

Примечание: * — положительные и отрицательные значения указывают на увеличение и снижение уровня микроРНК в клетках в ответ на пипоксию соответственно.

Чтобы оценить общие функциональные эффекты изменения представленности микроРНК в клетке в ответ на гипоксию, был проведен следующий анализ. С помощью pecypca TargetScan был создан список потенциальных мишеней микроРНК. Поскольку некоторые взаимодействия микроРНК и мРНК-мишеней ингибируют трансляцию, не влияя на уровень экспрессии мРНК, далее осуществляли поиск пар микроРНК-мРНК-мишень, демонстрирующих значимую отрицательную корреляцию при анализе образцов 441 пациента с аденокарциномой толстой кишки, полученных из базы данных TCGA-COAD (приложение 3). Затем полученный список пересекли со списком генов, экспрессия которых достоверно изменялась не менее чем в два раза в направлении, противоположном изменению соответствующей микроРНК. В результате были получены шесть микроРНК со статистически значимым числом дерегулированных генов-мишеней (гипергеометрический тест; *р* < 0,05): hsa-miR-18a-5p, hsa-miR-22-3p, hsa-miR-27a-5p, hsa-miR-182-5p, hsa-miR-215-5p, hsa-miR-425-5p (приложение 4).

Постороение сети регуляторных взаимодействий факторов транскрипции и микроРНК

Чтобы лучше понять механизмы, лежащие в основе аберрантной экспрессии микроРНК, была проанализирована возможность регуляции микроРНК факторами транскрипции (ТФ). В частности, рассмотрели ТФ, уровни представленности мРНК которых достоверно изменились в два или более раза в ответ на гипоксию, и провели поиск микроРНК, которые они регулируют, используя базу данных регуляторных взаимодействий ТФ-микроРНК TransmiR. В результате были идентифицированы 30 взаимодействий ТФ-микроРНК между 15 ТФ и 11 микроРНК. Мы также рассмотрели реципрокное miRNA-индуцированное молчание ТФ, чтобы построить полную регуляторную сеть на этих узлах (рис. 2). Как видно, четыре ТФ, кодируемые генами EGR1, HIF1A, MYC и RELA, одновременно регулируют несколько микроРНК, а большинство микроРНК регулируются ансамблями ТФ.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В настоящем исследовании с помощью техники интегративного секвенирования мРНК и микроРНК проведена оценка изменения транскриптомного ландшафта клеток HT-29 в ответ на гипоксию, индуцированную хлоридом кобальта (II). Помимо активации канонического сигнального пути HIF-1, было показано изменение экспрессии интегринов и ламининов, которые играют важнейшую роль в клеточной адгезии и взаимодействиях с внеклеточным матриксом. Последнее имеет особое значение, поскольку недавно полученные данные указывают на тесную связь между микроокружением, формируемым гипоксией, и метастатическим прогрессированием опухолей, включая аденокарциному толстой кишки [24]. Один из возможных механизмов метастатического распространения опухолей связан с ламинином 332. Взаимодействуя с различными рецепторами на поверхности клетки (включая интегрины α6β4 и α3β1, рецептор эпидермального фактора роста и синдекан 1), а также некоторыми другими компонентами базальной мембраны, ламинин 332 регулирует процесс онкогенеза, способствует инвазии и выживанию опухолевых клеток [25]. Повышенная экспрессия Y1-цепи ламининов (кодируемая геном LAMC1) также может играть роль в прогрессировании опухолевых заболеваний, как это было показано на карциноме матки [26].

Анализ профиля малых некодирующих РНК выявил несколько дифференциально экспрессированных микроРНК в ответ на гипоксию. Для некоторых из этих микроРНК ранее уже сообщалось об изменении их экспрессии при гипоксии, включая hsa-miR-210-3p [23], hsa-miR-27a-5p [27], hsa-miR-182-5p [28]. Для четырех микроРНК (hsa-miR-30b-5p, hsa-miR-32-5p, hsa-miR-425-5p, hsa-miR-1260a и hsa-miR-1260b) информации об их связи с ответом клетки на гипоксию обнаружено не было. Это можно объяснить как клеточной специфичностью ответа, так и поточными эффектами действия хлорида кобальта.

Особое внимание следует обратить на микроРНК, которые демонстрируют дифференциальные паттерны экспрессии, специфичные для конкретной цепи микроРНК

Рис. 2. Регуляторная сеть взаимодействий факторов транскрипции (ТФ) и микроРНК, индуцированная гипоксией. Прямоугольниками обозначен ТФ, эллипсами — микроРНК. Увеличение или снижение экспрессии показано зеленым и красным цветом соответственно. Стрелки обозначают активацию экспрессии, Т-образные линии — подавление

(«arm-specific» дифференциальные паттерны экспрессии), и для которых была отмечена регуляция только пассажирских цепей hsa-let-7a, hsa-mir-10a и hsa-mir-27a, в то время как экспрессия их направляющих цепей не изменялась (табл. 2). Недавно мы сообщили о подобном наблюдении для miR-21-3p (пассажирская цепь) в легких мыши, которая демонстрировала восьмикратное увеличение экспрессии при заражении SARS-CoV, в то время как направляющая цепь этой же микроPHK увеличивалась только в три раза [29]. Одной из наиболее перспективных теорий для объяснения данного феномена является регуляция цепей микроРНК РНКсвязывающими белками [30].

Анализ регуляторных взаимодействий ТФ и микроРНК показал, что HIF-1, p65, c-Myc и EGR1 (кодируемые генами HIF1A, RELA, MYC и EGR1) являются ключевыми факторами, регулирующими транскрипцию дифференциально экспрессированных микроРНК (см. рис. 2). Три из рассмотренных микроРНК продемонстрировали

Таблица 2. МикроРНК, демонстрирующие дифференциальные паттерны экспрессии, специфичные для конкретной цепи микроРНК

МикроРНК	Средний уровень экспрессии в контроле (RPM)	Изменение экспрессии, разы*	FDR
hsa-let-7a-5p	21537,87	1,07	0,899
hsa-let-7a-3p	631,34	-1,44	2,87 × 10 ⁻³
hsa-miR-10a-5p	100119,91	1,09	0,872
hsa-miR-10a-3p	2102,20	-1,29	0,0417
hsa-miR-27a-5p	158,10	1,51	0,0317
hsa-miR-27a-3p	6321,04	1,04	0,929

Примечание: * — положительные и отрицательные значения указывают на увеличение и снижение уровня микроРНК в клетках в ответ на гипоксию соответственно.

взаимообратную активность, подавляя некоторые из ТФ. В частности, HIF1A является подтвержденной мишенью hsamiR-18a-5p, которая подавляется множеством ТФ.

выводы

На основании проведенного интегративного секвенирования микроРНК/мРНК обнаружены значительные изменения

Литература

- 1. Semenza GL. Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol. 2014; 76: 39–56.
- Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 2015; 83.
- Muñoz-Sánchez J, Chánez-Cárdenas ME. The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol. 2019; 39 (4): 556–70.
- Cai Y, Yu X, Hu S, Yu J. A Brief Review on the Mechanisms of miRNA Regulation. Genomics Proteomics Bioinformatics. Elsevier; 2009; 7 (4): 147–54.
- Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE, et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol. 2009; 7 (11).
- 6. Turchinovich A, Tonevitsky AG, Cho WC, Burwinkel B. Check and mate to exosomal extracellular miRNA: new lesson from a new approach. Front Mol Biosci. Frontiers; 2015; 2: 11.
- Visone R, Croce CM. MiRNAs and cancer. Am J Pathol. 2009; 174 (4): 1131–8.
- Shkurnikov M, Nikulin S, Nersisyan S, Poloznikov A, Zaidi S, Baranova A, et al. LAMA4-Regulating miR-4274 and Its Host Gene SORCS2 Play a Role in IGFBP6-Dependent Effects on Phenotype of Basal-Like Breast Cancer. Front Mol Biosci. 2019; 6.
- 9. Lacedonia D, Scioscia G, Palladino GP, Gallo C, Carpagnano GE, Sabato R, et al. MicroRNA expression profile during different conditions of hypoxia. Oncotarget. 2018; 9 (80): 35114–22.
- 10. Shen G, Li X, Jia YF, Piazza GA, Xi Y. Hypoxia-regulated microRNAs in human cancer. Acta Pharmacol Sin. 2013; 34 (3): 336–41.
- 11. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011; 17 (1): 10.
- Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29 (1): 15–21.
- Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. Oxford Academic. 2012; 40 (1): 37–52.
- Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009; 26 (1): 139–40.
- Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. BioMed Central. 2014; 15 (12): 550.

References

- 1. Semenza GL. Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol. 2014; 76: 39–56.
- Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 2015; 83.
- Muñoz-Sánchez J, Chánez-Cárdenas ME. The use of cobalt chloride as a chemical hypoxia model. J Appl Toxicol. 2019; 39 (4): 556–70.
- 4. Cai Y, Yu X, Hu S, Yu J. A Brief Review on the Mechanisms

транскриптома и профиля микроРНК в клетках линии НТ-29 в условиях гипоксии, индуцированной CoCl₂. Показано, что дифференциальная экспрессия нескольких из микроРНК может быть причиной значительного изменения экспрессии их мРНК-мишеней. Анализ регуляторных взаимодействий между факторами транскрипции и микроРНК выявил возможные механизмы, лежащие в основе наблюдаемого ответа на гипоксию.

- Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. Nature Publishing Group. 2009; 4 (1): 44–57.
- Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015; 4 (AUGUST2015).
- Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012; 487 (7407): 330–7.
- Tong Z, Cui Q, Wang J, Zhou Y. TransmiR v2.0: An updated transcription factor-microRNA regulation database. Nucleic Acids Res. 2019; 47 (D1): D253--D258.
- Culver C, Sundqvist A, Mudie S, Melvin A, Xirodimas D, Rocha S. Mechanism of hypoxia-induced NF-κB. Mol Cell Biol. 2010; 30 (20): 4901–21.
- Mungai PT, Waypa GB, Jairaman A, Prakriya M, Dokic D, Ball MK, et al. Hypoxia Triggers AMPK Activation through Reactive Oxygen Species-Mediated Activation of Calcium Release-Activated Calcium Channels. Mol Cell Biol. 2011; 31 (17): 3531–45.
- Domogatskaya A, Rodin S, Tryggvason K. Functional Diversity of Laminins. Annu Rev Cell Dev Biol. 2012; 28 (1): 523–53.
- Bavelloni A, Ramazzotti G, Poli A, Piazzi M, Focaccia E, Blalock W, et al. Mirna-210: A current overview. Anticancer Res. 2017; 37 (12): 6511–21.
- 24. Rankin EB, Giaccia AJ. Hypoxic control of metastasis. Sci (80-). 2016; 352 (6282): 175–80.
- 25. Мальцева Д. В., Родин С. А. Ламинины и метастазирование опухолей. Мол. Биол. 2018; 52 (3): 350–71.
- Kashima H, Wu RC, Wang Y, Sinno AK, Miyamoto T, Shiozawa T, et al. Laminin C1 expression by uterine carcinoma cells is associated with tumor progression. Gynecol Oncol. Elsevier Inc.; 2015; 139 (2): 338–44.
- Zhang J, Qiu W, Ma J, Wang Y, Hu Z, Long K, et al. miR-27a-5p Attenuates Hypoxia-induced Rat Cardiomyocyte Injury by Inhibiting Atg7. Int J Mol Sci. 2019; 20 (10).
- Zhang Y, Fang J, Ma H. Inhibition of miR-182-5p protects cardiomyocytes from hypoxia-induced apoptosis by targeting CIAPIN1. Biochem Cell Biol. 2018; 96 (5): 646–54.
- Nersisyan S, Engibaryan N, Gorbonos A, Kirdey K, Makhonin A, Tonevitsky A. Potential role of cellular miRNAs in coronavirus-host interplay. PeerJ. 2020; 8: e9994.
- Van Kouwenhove M, Kedde M, Agami R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer. 2011; 11 (9): 644–56.

of miRNA Regulation. Genomics Proteomics Bioinformatics. Elsevier; 2009; 7 (4): 147–54.

- Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE, et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol. 2009; 7 (11).
- Turchinovich A, Tonevitsky AG, Cho WC, Burwinkel B. Check and mate to exosomal extracellular miRNA: new lesson from a new approach. Front Mol Biosci. Frontiers; 2015; 2: 11.

- Visone R, Croce CM. MiRNAs and cancer. Am J Pathol. 2009; 174 (4): 1131–8.
- Shkurnikov M, Nikulin S, Nersisyan S, Poloznikov A, Zaidi S, Baranova A, et al. LAMA4-Regulating miR-4274 and Its Host Gene SORCS2 Play a Role in IGFBP6-Dependent Effects on Phenotype of Basal-Like Breast Cancer. Front Mol Biosci. 2019; 6.
- 9. Lacedonia D, Scioscia G, Palladino GP, Gallo C, Carpagnano GE, Sabato R, et al. MicroRNA expression profile during different conditions of hypoxia. Oncotarget. 2018; 9 (80): 35114–22.
- 10. Shen G, Li X, Jia YF, Piazza GA, Xi Y. Hypoxia-regulated microRNAs in human cancer. Acta Pharmacol Sin. 2013; 34 (3): 336–41.
- 11. Martin M. Cutadapt removes adapter sequences from highthroughput sequencing reads. EMBnet.journal. 2011; 17 (1): 10.
- Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics. 2013; 29 (1): 15–21.
- Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. Oxford Academic. 2012; 40 (1): 37–52.
- Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009; 26 (1): 139–40.
- Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. BioMed Central. 2014; 15 (12): 550.
- Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. Nature Publishing Group. 2009; 4 (1): 44–57.
- Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015; 4 (AUGUST2015).
- Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, et al. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012; 487 (7407): 330–7.

- Tong Z, Cui Q, Wang J, Zhou Y. TransmiR v2.0: An updated transcription factor-microRNA regulation database. Nucleic Acids Res. 2019; 47 (D1): D253--D258.
- Culver C, Sundqvist A, Mudie S, Melvin A, Xirodimas D, Rocha S. Mechanism of hypoxia-induced NF-κB. Mol Cell Biol. 2010; 30 (20): 4901–21.
- Mungai PT, Waypa GB, Jairaman A, Prakriya M, Dokic D, Ball MK, et al. Hypoxia Triggers AMPK Activation through Reactive Oxygen Species-Mediated Activation of Calcium Release-Activated Calcium Channels. Mol Cell Biol. 2011; 31 (17): 3531–45.
- 22. Domogatskaya A, Rodin S, Tryggvason K. Functional Diversity of Laminins. Annu Rev Cell Dev Biol. 2012; 28 (1): 523–53.
- Bavelloni A, Ramazzotti G, Poli A, Piazzi M, Focaccia E, Blalock W, et al. Mirna-210: A current overview. Anticancer Res. 2017; 37 (12): 6511–21.
- Rankin EB, Giaccia AJ. Hypoxic control of metastasis. Sci (80-). 2016; 352 (6282): 175–80.
- Maltseva D V., Rodin SA. Laminins in metastatic cancer. Mol Biol. Springer; 2018; 52 (3): 350–71.
- Kashima H, Wu RC, Wang Y, Sinno AK, Miyamoto T, Shiozawa T, et al. Laminin C1 expression by uterine carcinoma cells is associated with tumor progression. Gynecol Oncol. Elsevier Inc.; 2015; 139 (2): 338–44.
- Zhang J, Qiu W, Ma J, Wang Y, Hu Z, Long K, et al. miR-27a-5p Attenuates Hypoxia-induced Rat Cardiomyocyte Injury by Inhibiting Atg7. Int J Mol Sci. 2019; 20 (10).
- Zhang Y, Fang J, Ma H. Inhibition of miR-182-5p protects cardiomyocytes from hypoxia-induced apoptosis by targeting CIAPIN1. Biochem Cell Biol. 2018; 96 (5): 646–54.
- Nersisyan S, Engibaryan N, Gorbonos A, Kirdey K, Makhonin A, Tonevitsky A. Potential role of cellular miRNAs in coronavirus-host interplay. PeerJ. 2020; 8: e9994.
- Van Kouwenhove M, Kedde M, Agami R. MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer. 2011; 11 (9): 644–56.