OPINION

Triphenyl phosphonium-based substances are alternatives to common antibiotics

Pinto TCA1, Banerjee A2, Nazarov PA3
About authors

1 Instituto de Microbiologia Paulo de Góes,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

2 Department of Biosciences & Bioengineering,
Indian Institute of Technology Bombay, Mumbai, India

3 Belozersky Institute of Physico-Chemical Biology,
Lomonosov Moscow State University, Moscow, Russia

Correspondence should be addressed: Pavel Nazarov
ul. Narimanovskaya, d. 22, k. 3, kv. 294, Moscow, Russia, 107564; moc.liamg@apvorazan

About paper

Acknowledgements: we are grateful to Dr. Y. N. Antonenko and Dr. M. V. Skulachev for critical reading and helpful discussion of the manuscript.

Received: 2018-01-23 Accepted: 2018-02-01 Published online: 2018-03-05
|
Protonophoric cycling performed by protonophore uncoupler CCCP and protonophore-like triphenyl phosphonium-based coupler SkQ1 with help of fatty acids (FA)