ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Использование магнитных наночастиц оксида железа сферической и кубической формы в доставке доксорубицина в клетки

Информация об авторах

1 Лаборатория биомедицинских наноматериалов, Национальный исследовательский технологический университет «МИСиС», Москва

2 Научно-исследовательская лаборатория тканеспецифических лигандов, Химический факультет, Московский государственный университет имени М. В. Ломоносова», Москва

3 Кафедра физического материаловедения, Национальный исследовательский технологический университет «МИСиС», Москва

Для корреспонденции: Тимур Радикович Низамов
Ленинский пр-т, д. 4, г. Москва, 119049; moc.liamg@rumit.vomazin

Информация о статье

Финансирование: работа выполнена при поддержке Министерства образования и науки РФ, соглашение № 14.578.21.0201 (уникальный идентификатор RFMEFI57816X0201).

Статья получена: 28.08.2018 Статья принята к печати: 20.09.2018 Опубликовано online: 31.12.2018
|
  1. Ling D, Hyeon T. Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small. 2013; 9 (9–10): 1450–66. DOI:10.1002/smll.201202111.
  2. Majewski P, Thierry B. Functionalized Magnetite Nanoparticles — Synthesis, Properties, and Bio-Applications. Crit Rev Solid State Mater Sci. 2007; 32 (3–4): 203–15.DOI:10.1080/10408430701776680.
  3. Xie J, Huang J, Li X, Sun S, Chen X. Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem. 2009; 16 (10): 1278–94. DOI:10.2174/092986709787846604.
  4. Oh JK, Park JM. Iron oxide-based superparamagnetic polymeric nanomaterials: Design, preparation, and biomedical application. Prog Polym Sci. 2011; 36 (1): 168–89. DOI:10.1016/j. progpolymsci.2010.08.005.
  5. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev. 2008; 108 (6): 2064–110. DOI:10.1021/ cr068445e.
  6. Lin JJ, Chen JS, Huang SJ, Ko JH, Wang YM, Chen TL et al. Folic acid-Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials. 2009; 30 (28): 5114–24. DOI:10.1016/j.biomaterials.2009.06.004.
  7. Andhariya N, Chudasama B, Mehta RV, Upadhyay RV. Biodegradable thermoresponsive polymeric magnetic nanoparticles: A new drug delivery platform for doxorubicin. J Nanoparticle Res. 2011; 13 (4): 1677–88. DOI:10.1007/s11051-010-9921-6.
  8. Tavano L, Vivacqua M, Carito V, Muzzalupo R, Caroleo MC, Nicoletta F. Doxorubicin loaded magneto-niosomes for targeted drug delivery. Colloids Surfaces B Biointerfaces. 2013; (102): 803–7. DOI:10.1016/j.colsurfb.2012.09.019.
  9. Jain TK, Foy SP, Erokwu B, Dimitrijevic S, Flask CA, Labhasetwar V. Magnetic resonance imaging of multifunctional pluronic stabilized iron-oxide nanoparticles in tumor-bearing mice. Biomaterials. 2009; 30 (35): 6748–56. DOI:10.1016/j.biomaterials.2009.08.042.
  10. Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. J Appl Toxicol. 2009; 29 (1): 69–78. DOI:10.1002/ jat.1385.
  11. Nair S, Sasidharan A, Divya Rani VV, Menon D, Nair S, Manzoor K et al. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med. 2009; 20 (1): 235–41. DOI:10.1007/s10856-008- 3548-5.
  12. Huang X, Teng X, Chen D, Tang F, He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials. 2010; 31 (3):438–48. DOI:10.1016/j. biomaterials.2009.09.060.
  13. Xiong Y, Brunson M, Huh J, Huang A, Coster A, Wendt K et al. The role of surface chemistry on the toxicity of Ag nanoparticles. Small. 2013; 9 (15): 2628–38. DOI:10.1002/smll.201202476.
  14. Tarantola M, Pietuch A, Schneider D, Rother J, Sunnick E, Rosman C et al. Toxicity of gold-nanoparticles: Synergistic effects of shape and surface functionalization on micromotility of epithelial cells. Nanotoxicology. 2011; 5 (2): 254–68. DOI:10.3109 /17435390.2010.528847.
  15. Tacar O, Sriamornsak P, Dass CR. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013; 65 (2): 157–70. DOI:10.1111/ j.2042-7158.2012.01567.x.
  16. Gautier J, Munnier E, Paillard A, Hervé K, Douziech-Eyrolles L, Soucé M et al. A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting. Int J Pharm. 2012; 423 (1): 16–25. DOI:10.1016/j.ijpharm.2011.06.010.
  17. Yu WW, Falkner JC, Yavuz CT, Colvin VL. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts. Chem Commun. 2004; (20): 2306–7. DOI:10.1039/b409601k.
  18. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater. 2004; 3 (12): 891–5. DOI:10.1038/nmat1251.
  19. Hai HT, Yang HT, Kura H, Hasegawa D, Ogata Y, Takahashi M et al. Size control and characterization of wustite (core)/spinel (shell) nanocubes obtained by decomposition of iron oleate complex. J Colloid Interface Sci. 2010; 346 (1): 37–42. DOI:10.1016/j. jcis.2010.02.025.
  20. Simon T, Boca S, Biro D, Baldeck P, Astilean S. Gold-Pluronic core-shell nanoparticles: Synthesis, characterization and biological evaluation. J Nanoparticle Res. 2013; 15 (4): 1578. DOI:10.1007/ s11051-013-1578-5.
  21. Gonzales M, Krishnan KM. Phase transfer of highly monodisperse iron oxide nanocrystals with Pluronic F127 for biomedical applications. J Magn Magn Mater. 2007; 311 (1): 59–62. DOI:10.1016/j.jmmm.2006.10.1150.
  22. Zhou Z, Zhu X, Wu D, Chen Q, Huang D, Sun C et al. Anisotropic shaped iron oxide nanostructures: Controlled synthesis and proton relaxation shortening effects. Chem Mater. 2015; 27 (9): 3505–15. DOI:10.1021/acs.chemmater.5b00944.
  23. Kolosnjaj-Tabi J, Di Corato R, Lartigue L, Marangon I, Guardia P, Silva AKA et al. Heat-Generating Iron Oxide Nanocubes: Subtle "Destructurators" of the Tumoral Microenvironment. ACS Nano. 2014; 8 (5): 4268–83. DOI:10.1021/nn405356r.
  24. Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M et al. Water Soluble Iron Oxide Nanocubes with High Values of Specific Absorption Rate for Cancer Cell Hyperthermia Treatment. ACS nano. 2012; 6 (4): 3080–91. DOI:10.1021/nn2048137.
  25. Nemati Z, Alonso J, Martinez LM, Khurshid H, Garaio E, Garcia JA et al. Enhanced Magnetic Hyperthermia in Iron Oxide Nano- Octopods: Size and Anisotropy Effects. J Phys Chem C. 2016; 120 (15): 8370–9. DOI:10.1021/acs.jpcc.6b01426.
  26. Lee N, Kim H, Choi SH, Park M, Kim D, Kim H-C et al. Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc Natl Acad Sci. 2011; 108 (7): 2662–7. DOI:10.1073/ pnas.1016409108.
  27. Nizamov TR, Garanina AS, Grebennikov IS, Zhironkina OA, Strelkova OS, Alieva IB et al. Effect of Iron Oxide Nanoparticle Shape on Doxorubicin Drug Delivery Toward LNCaP and PC-3 Cell Lines. BioNanoScience. 2018; 8 (1): 394–406. DOI:10.1007/ s12668-018-0502-y.
  28. Kievit FM, Wang FY, Fang C, Mok H, Wang K, Silber JR et al. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J Control Release. 2011; 152 (1): 76–83. DOI:10.1016/j.jconrel.2011.01.024.