DOI: 10.24075/brsmu.2018.080

ORIGINAL RESEARCH

Lipidoid iron oxide nanoparticles are a platform for nucleic acid delivery to the liver

About authors

1 Laboratory of Biomedical Nanomaterials, National University of Science and Technology MISiS, Moscow

2 Center of Life Science, Skolkovo Institute of Science and Technology, Moscow

3 Laboratory of Tissue Specific Ligands Investigation, Lomonosov Moscow State University, Moscow

4 Department of Physical Materials Science, National University of Science and Technology MISiS, Moscow

5 Mendeleev University of Chemical Technology of Russia, Moscow

Correspondence should be addressed: Victoria I. Uvarova
Leninsky 4, Moscow, 119049; ur.kb@ayirotkiv_avoravu

About paper

Funding: the study was funded by the Ministry of Science and Higher Education of the Russian Federation. Project 14.578.21.0201 (ID RFMEFI57816X0201).

Received: 2018-06-26 Accepted: 2018-08-25 Published online: 2018-12-30
|
  1. Wouters K, Shiri-Sverdlov R, van Gorp PJ, van Bilsen M, Hofker MH. Understanding hyperlipidemia and atherosclerosis: lessons from genetically modified apoe and ldlr mice. Clin Chem Lab Med [Internet]. 2005 [cited 2017 Oct 28]; 43 (5): 470–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15899668.
  2. Pagidipati NJ, Gaziano TA. Estimating Deaths From Cardiovascular Disease: A Review of Global Methodologies of Mortality Measurement. Circulation. 2013; 127 (6): 749–56.
  3. Sullenger BA, Nair S. From the RNA world to the clinic. Science 17. 2016; 352 (6292): 1417–20.
  4. McClorey G, Wood MJ. An overview of the clinical application of antisense oligonucleotides for RNA-targeting therapies. Curr Opin Pharmacol. 2015; (24): 52–8.
  5. Kulkarni JA, Cullis PR, van der Meel R. Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility. Nucleic Acid Ther. 2018; 28 (3): 146–57.
  6. Mahajan UM, Teller S, Sendler M, Palankar R, van den Brandt C, Schwaiger T et al. Tumour-specific delivery of siRNA-coupled superparamagnetic iron oxide nanoparticles, targeted against PLK1, stops progression of pancreatic cancer. Gut. 2016; 65 (11): 1838–49.
  7. Kim M-C, Lin MM, Sohn Y, Kim J-J, Kang BS, Kim DK. Polyethyleneimine-associated polycaprolactone-Superparamagnetic iron oxide nanoparticles as a gene delivery vector. J Biomed Mater Res Part B Appl Biomater. 2017; 105 (1): 145–54.
  8. Nayerossadat N, Ali P, Maedeh T. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res. 2012; 1 (1): 27.
  9. Yang N. An overview of viral and nonviral delivery systems for microRNA. Int J Pharm Investig. 2015; 5 (4): 179.
  10. Nayak S, Herzog RW. Progress and prospects: immune responses to viral vectors. Gene Ther. 2010; 17 (3): 295–304.
  11. Qiu J, Kong L, Cao X, Li A, Wei P, Wang L et al. Enhanced Delivery of Therapeutic siRNA into Glioblastoma Cells Using Dendrimer- Entrapped Gold Nanoparticles Conjugated with β-Cyclodextrin. Nanomaterials. 2018; 8 (3): 131.
  12. Singh Y, Tomar S, Khan S, Meher JG, Pawar VK, Raval K et al. Bridging small interfering RNA with giant therapeutic outcomes using nanometric liposomes. J Control Release. 2015; (220): 368–87.
  13. Leung AK, Tam YY, Cullis PR. Lipid Nanoparticles for Short Interfering RNA Delivery. Adv Genet. 2014; (88): 71–110.
  14. Nakamura T, Yamada K, Fujiwara Y, Sato Y, Harashima H. Reducing the Cytotoxicity of Lipid Nanoparticles Associated with a Fusogenic Cationic Lipid in a Natural Killer Cell Line by Introducing a Polycation-Based siRNA Core. Mol Pharm. 2018; 15 (6): 2142–50.
  15. Jin M, Jin G, Kang L, Chen L, Gao Z, Huang W. Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes. Int J Nanomedicine. 2018; (13): 2405.
  16. Novobrantseva TI, Borodovsky A, Wong J, Klebanov B, Zafari M, Yucius K et al. Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells. Mol Ther Nucleic Acids. 2012; (1): e4.
  17. Kumar V, Qin J, Jiang Y, Duncan RG, Brigham B, Fishman S et al. Shielding of Lipid Nanoparticles for siRNA Delivery: Impact on Physicochemical Properties, Cytokine Induction, and Efficacy. Mol Ther Nucleic Acids. 2014; (3): e210.
  18. Alshehri A, Grabowska A, Stolnik S. Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells. Sci Rep. 2018; 8 (1): 3748.
  19. Soenen SJ, Hodenius M, De Cuyper M. Magnetoliposomes: versatile innovative nanocolloids for use in biotechnology and biomedicine. Nanomedicine. 2009; 4 (2): 177–91.
  20. Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev Res [Internet]. 2006 [cited 2017 Sep 18]; 67(1): 55–60. Available from: http://onlinelibrary.wiley.com/doi/10.1002/ddr.20067/abstract.
  21. Zhang JQ, Zhang ZR, Yang H, Tan QY, Qin SR, Qiu XL. Lyophilized paclitaxel magnetoliposomes as a potential drug delivery system for breast carcinoma via parenteral administration: in vitro and in vivo studies. Pharm Res [Internet]. 2005 [cited 2017 Sep 18]; 22 (4): 573–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15846465.
  22. Yang L, Wang Z, Ma L, Li A, Xin J, Wei R et al. The Roles of Morphology on the Relaxation Rates of Magnetic Nanoparticles. ACS Nano. 2018; 12 (5): 4605–14.
  23. Bronstein LM, Huang X, Retrum J, Schmucker A, Pink M, Stein BD et al. Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation. 2007 [cited 2017 Dec 16]; 19 (15): 3624–32. Available from: http://pubs.acs.org/doi/abs/10.1021/cm062948j.
  24. Hai HT, Yang HT, Kura H, Hasegawa D, Ogata Y, Takahashi M et al. Size control and characterization of wustite (core)/spinel (shell) nanocubes obtained by decomposition of iron oleate complex. J Colloid Interface Sci [Internet]. 2010; 346 (1): 37–42. Available from: http://dx.doi.org/10.1016/j.jcis.2010.02.025.
  25. Jiang S, Eltoukhy A, Love K, Langer R, Anderson D. Lipidoid- Coated Iron Oxide Nanoparticles for Efficient DNA and siRNA delivery. Nano Lett [Internet]. 2013; 1–6. Available from: citeulike- article-id:12014954%5Cnhttp://dx.doi.org/10.1021/nl304287a.
  26. Love KT, Mahon KP, Levins CG, Whitehead KA, Querbes W, Dorkin JR et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci. 2010; 107 (5): 1864–9.
  27. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods. 1983; 65 (1–2): 55–63.
  28. Mamani JB, Costa-Filho AJ, Cornejo DR, Vieira ED, Gamarra LF. Synthesis and characterization of magnetite nanoparticles coated with lauric acid. Mater Charact. 2013; (81): 28–36.
  29. Nemati Z, Das R, Alonso J, Clements E, Phan MH, Srikanth H. Iron Oxide Nanospheres and Nanocubes for Magnetic Hyperthermia Therapy: A Comparative Study. J Electron Mater [Internet]. 2017 [cited 2017 Dec 16]; 46 (6): 3764–9. Available from: http://link. springer.com/10.1007/s11664-017-5347-6.
  30. Cullity BD, Graham CD. Introduction to magnetic materials. 2nd ed. Hoboken, NJ: IEEE/Wiley, 2009; 544 p.
  31. Marciello M, Connord V, Veintemillas-Verdaguer S, Vergés MA, Carrey J, Respaud M, et al. Large scale production of biocompatible magnetite nanocrystals with high saturation magnetization values through green aqueous synthesis. J Mater Chem B. 2013; 1 (43): 5995–6004.
  32. Verma A, Stellacci F. Effect of Surface Properties on Nanoparticle– Cell Interactions. Small. 2010; 6 (1): 12–21.
  33. Adler AF, Leong KW. Emerging links between surface nanotechnology and endocytosis: Impact on nonviral gene delivery. Nano Today. 2010; 5 (6): 553–69.
  34. Gupta AK, Gupta M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials [Internet]. 2005 [cited 2017 Jun 9]; 26 (13): 1565–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15522758.
  35. Gupta AK, Curtis AS. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials. 2004; 25 (15): 3029–40.
  36. Soenen SJH, Nuytten N, De Meyer SF, De Smedt SC, De Cuyper M. High Intracellular Iron Oxide Nanoparticle Concentrations Affect Cellular Cytoskeleton and Focal Adhesion Kinase-Mediated Signaling. Small. 2010; 6 (7): 832–42.
  37. Berry CC. Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys. 2009; 42 (22): 224003.
  38. Zhang J, Ring HL, Hurley KR, Shao Q, Carlson CS, Idiyatullin D et al. Quantification and biodistribution of iron oxide nanoparticles in the primary clearance organs of mice using T1 contrast for heating. Magn Reson Med [Internet]. 2017 [cited 2017 Dec 22]; 78 (2): 702–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27667655.
  39. Bargheer D, Giemsa A, Freund B, Heine M, Waurisch C, Stachowski GM et al. The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice. Beilstein J Nanotechnol. 2015; (6): 111–23.
  40. Ruiz A, Hernández Y, Cabal C, González E, Veintemillas-Verdaguer S, Martínez E, et al. Biodistribution and pharmacokinetics of uniform magnetite nanoparticles chemically modified with polyethylene glycol. Nanoscale. 2013; 5 (23): 11400–8.