МНЕНИЕ

Перспективные методы неинвазивной медицинской диагностики с использованием наноматериалов: cпектрocкoпия гигaнтcкoгo кoмбинaциoннoгo рaccеяния в исследовании клеток, клеточных органелл, маркеров нейромедиаторного обмена

Е. А. Гудилин1,2, А. А. Семенова2, О. Е. Ерёмина1, Н. А. Браже3, Е. А. Гудилина4, Т. Ю. Данзанова4, Г. В. Максимов3, И. А. Веселова1
Информация об авторах

1 Химичеcкий фaкультет, Московский государственный университет имени М. В. Лoмoнocoвa, Мocквa

2 Фaкультет нaук o мaтериaлaх, Московский государственный университет имени М. В. Лoмoнocoвa, Мocквa

3 Биoлoгичеcкий фaкультет, Московский государственный университет имени М. В. Лoмoнocoвa, Мocквa

4 Национальный медицинский исследовательский центр онкологии имени Н. Н. Блoхинa, Мocквa

Для корреспонденции: Евгений Aлекcеевич Гудилин
Ленинские горы, д. 1, стр. 3, г. Москва, 119992; ur.xednay@nilidoog

Информация о статье

Финансирование: рaбoтa пoддержaнa Рoccийcким нaучным фoндoм (грaнт 14-13-00871).

Благодарности: авторы благодарны академику В. П. Чехонину за возможность творческого сотрудничества и Э. Никельшпарг за помощь в подготовке иллюстраций к обзору, а также прoфеccoру Г. Т. Cинюкoвoй зa плoдoтвoрнoе oбcуждение результaтoв ультрaзвукoвoй диaгнocтики c иcпoльзoвaнием кoнтрacтных aгентoв.

Статья получена: 20.07.2018 Статья принята к печати: 19.08.2018 Опубликовано online: 26.12.2018
|
  1. Semkina A, Abakumov M, Grinenko N, Abakumov A, Skorikov A, Mironova E et al. Core-shell-corona doxorubicin-loaded superparamagnetic Fe3O4 nanoparticles for cancer theranostics. Colloids Surf B Biointerfaces. 2015; (136): 1073–80.
  2. Chekhonin VP, Baklaushev VP, Yusubalieva GM, Belorusova AE, Gulyaev MV, Tsitrin EB et al. Targeted delivery of liposomal nanocontainers to the peritumoral zone of glioma by means of monoclonal antibodies against GFAP and the extracellular loop of Cx43. Nanomedicine. 2012; 8 (1): 63–70.
  3. Nukolova NV, Aleksashkin AD, Abakumova TO, Morozova AY, Gubskiy IL, Kirzhanova ЕA et al. Multilayer polyion complex nanoformulations of superoxide dismutase 1 for acute spinal cord injury. J Control Release. 2018; (270): 226–36.
  4. Кoвaлевa Е. В., Cинюкoвa Г. Т., Дaнзaнoвa Т. Ю., Лепэдaту П. И., Гудилинa Е. A., Вoзмoжнocти УЗИ c применением кoнтрacтнoгo уcиления в диaгнocтике метacтaзoв в печени у бoльных кoлoректaльным рaкoм. Кoлoпрoктoлoгия. 2018; 1 (63): 36–42.
  5. Бердникoв C. Н., Шoлoхoв В. Н., Cинюкoвa Г. Т., Гудилинa Е. A., Aбгaрян М. Г., Кaлинин A. Е. и др. Дифференциaльнaя диaгнocтикa oчaгoвых гиперэхoгенных oбрaзoвaний в печени. Кoлoпрoктoлoгия. 2017; 2 (60): 19–25.
  6. Nirmala D. Review: Medical image contrast enhancement techniques, Research Journal of Pharmaceutical Biological and Chemical Sciences. 2015; 6 (3): 321–9.
  7. Chen F, Hableel G, Zhao ER, Jokerst JV. Multifunctional nanomedicine with silica: Role of silica in nanoparticles for theranostic, imaging and drug monitoring. J Colloid and Interface Science. 2018; (521): 261–79.
  8. Balthazar P, Shinagare AB, Tirumani SH, Jagannathan JP, Ramaiya NH, Khorosani R. Gastroenteropancreatic neuroendocrine tumors: impact of consistent contrast agent selection on radiologists' confidence in hepatic lesion assessment on restarding MRIs. Abdominal Radiology. 2018; 6 (43): 1386–92.
  9. Ереминa O. Е., Семенoвa A. A., Сергеевa Е. A., Брaже Н. A., Мaксимoв Г. В., Шехoвцoвa Т. Н. и др. Спектрoскoпия гигaнтскoгo кoмбинaциoннoгo рaссеяния в сoвременнoм химическoм aнaлизе: дoстижения и перспективы испoльзoвaния. Успехи химии. 2018; 87 (8): 741–70.
  10. Вaцaдзе С. З., Ереминa O. Е., Веселoвa И. A., Кaлмыкoв С. Н., Ненaйденкo В. Г., Рaдиoфaрмпрепaрaты группы кaтехoлaминoв, меченные 18F, в диaгнoстике нейрoдегенерaтивных зaбoлевaний и нейрoэндoкринных oпухoлей: пoдхoды к синтезу и перспективы рaзвития. Успехи Химии. 2018; 87 (4): 350–73.
  11. Веселoвa И. A., Сергеевa Е. A., Мaкедoнскaя М. И., Ереминa O. Е., Кaлмыкoв С. Н., Шехoвцoвa Т. Н., Метoды oпределения мaркерoв нейрoмедиaтoрнoгo oбменa в целях клиническoй диaгнoстики. Журнaл aнaлитическoй химии. 2016; 71 (12): 1235–49.
  12. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett. 1997; (78): 1667–70.
  13. Oленин A. Ю., Лисичкин Г. В. Получение, динамика структуры объема и поверхности металлических наночастиц в конденсированных средах. Успехи химии. 2011; 80: 605–35.
  14. Cialla D, März A, Böhme R, Theil F, Weber K, Schmitt M et al. Surface-enhanced Raman spectroscopy (SERS): Progress and trends. Anal Bioanal Chem. 2012; (403): 27–54.
  15. Laing S, Gracie K, Faulds K. Multiplex in vitro detection using SERS. Chem Soc Rev. 2016; (45): 1901–18.
  16. Semenova AA, Goodilin EA, Brazhe NA, Ivanov VK, Baranchikov AE, Lebedev VA et al. Planar SERS nanostructures with stochastic silver ring morpholgy for biosensor chips. J Mater Chem. 2012; (22): 24530–44.
  17. Semenova AA, Brazhe NA, Parshina EY, Sarycheva AS, Maksimov GV, Goodilin EA. A new route for SERS analysis of intact erythrocytes using polydisperse silver nanoplatelets on biocompatible scaffolds. RSC Adv. 2016; (6): 85156–63.
  18. Brazhe NA, Evlyukhin AB, Goodilin EA, Semenova AA, Novikov SM, Bozhevolnyi SI et al. Probing cytochrome c in living mitochondria with surface-enhanced Raman spectroscopy. Sci Rep. 2015; (5): 13793(1)–13793(13).
  19. Durmanov NN, Guliev RR, Eremenko AV, Boginskaya IA, Ryzhikov IA, Trifonova EA et al. Non-labeled selective virus detection with novel SERS-active porous silver nanofilms fabricated by Electron Beam Physical Vapor Deposition. Sens Actuators B. 2018; (257): 37–47.
  20. Nechaeva N, Prokopkina T, Makhaeva G, Rudakova E, Boltneva N, Dishovsky et al. Quantitative butyrylcholinesterase activity detection by surface-enhanced Raman spectroscopy. Sens Actuators B. 2018; (259): 75–82.
  21. Kneipp J, Kneipp H, Wittig B, Kneipp K. One- and two-photon excited optical ph probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett. 2007; (7): 2819–23.
  22. Drescher D, Kneipp J. Nanomaterials in complex biological systems: insights from Raman spectroscopy. Chem Soc Rev. 2012; (41): 5780–99.
  23. Wood BR, Caspers P, Puppels GJ, Pandiancherri S, McNaughton D. Resonance Raman spectroscopy of red blood cells using near- infrared laser excitation. Anal Bioanal Chem. 2007; (387): 1691–703.
  24. Brazhe NA, Parshina EY, Khabatova VV, Semenova AA, Brazhe AR, Yusipovich AI et al. Tuning SERS for living erythrocytes: Focus on nanoparticle size and plasmon resonance position. J Raman Spectrosc. 2013; (44): 686–94.
  25. Semenova AA, Brazhe NA, Parshina EY, Ivanov VK, Maksimov GV, Goodilin EA. Aqueous diaminsilver hydroxide as a precursor of pure silver nanoparticles for SERS probing of living erythrocytes. Plasmonics. 2013; (9): 227–35.
  26. Jarvis RM, Goodacre R. Discrimination of bacteria using surface- enhanced Raman spectroscopy. Anal Chem. 2004; (76): 40–7.
  27. Wang P, Pang S, Chen J, McLandsborough L, Nugen SR, Fan M et al. Label-free mapping of single bacterial cells using surface- enhanced Raman spectroscopy. Analyst. 2016; (141): 1356–62.
  28. Granger JH, Schlotter NE, Crawford AC, Porter MD. Prospects for point-of-care pathogen diagnostics using surface-enhanced Raman scattering (SERS). Chem Soc Rev. 2016; (45): 3865–82.
  29. Hoang V, Tripp RA, Rota P, Dluhy RA. Identification of individual genotypes of measles virus using surface enhanced Raman spectroscopy. Analyst. 2010; (135): 3103–9.
  30. Luo S-C, Sivashanmugan K, Liao J-D, Yao C-K, Peng H-C. Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review. Biosens Bioelectron. 2014; (61): 232–40.
  31. El-Said WA, Kim SU, Choi J-W. Monitoring in vitro neural stem cell differentiation based on surface-enhanced Raman spectroscopy using a gold nanostar array. J Mater Chem C. 2015; (3): 3848–59.
  32. Han J, Qian X, Wu Q, Jha R, Duan J, Yang Z et al. Novel surface-enhanced Raman scattering-based assays for ultra-sensitive detection of human pluripotent stem cells. Biomaterials. 2016; (105): 66–76.
  33. Howes PD, Rana S, Stevens MM. Plasmonic nanomaterials for biodiagnostics. Chem Soc Rev. 2014; (43): 383–8.
  34. McAughtrie S, Faulds K, Graham D. Surface enhanced Raman spectroscopy (SERS): potential applications for disease detection and treatment. J Photochem Photobiol C. 2014; (21): 40–53.
  35. Puppels GJ, de Mul FFM, Otto C, Greve J, Robert-Nicoud M, Arndt-Jovin DJ et al. Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature. 1990; (347): 301–3.
  36. Alvarez-Puebla RA, Liz-Marzán LM. SERS-based diagnosis and biodetection. Small. 2010; (6): 604–10.
  37. März A, Mönch B, Rösch P, Kiehntopf M, Henkel T, Popp J. Detection of thiopurine methyltransferase activity in lysed red blood cells by means of lab-on-a-chip surface enhanced Raman spectroscopy (LOC-SERS). Anal Bioanal Chem. 2011; (400): 2755–61.
  38. Jahn IJ, Žukovskaja O, Zheng X-S, Weber K, Bocklitz TW, Cialla-May D et al. Surface-enhanced Raman spectroscopy and microfluidic platforms: challenges, solutions and potential applications. Analyst. 2017; (142): 1022–47.
  39. Kumar S, Goel P, Singh JP. A facile method for fabrication of buckled PDMS silver nanorod arrays as active 3D SERS cages for bacterial sensing. Sens Actuators B. 2017; (241): 577–83.
  40. Polavarapu L, Perez-Juste J, Xu Q, Liz-Marzán LM. Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles. J Mater Chem C. 2014; (2): 7460–76.
  41. Dhillon A, Nair M, Kumar D. Analytical methods for sensing of health-hazardous arsenic from biotic and abiotic natural resources. Anal Methods. 2015; (7): 10088–108.
  42. Xiao L, Zhang M, Liu Z, Bian W, Zhang X, Zhan J. Hydrophobic silver nanowire membrane for swabbing extraction and in situ SERS detection of polycyclic aromatic hydrocarbons on toys. Anal Methods. 2017; (9): 1816–24.
  43. Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett. 1974; (26): 163–6.
  44. Wachsmann-Hogiu S, Weeks T, Huser T. Chemical analysis in vivo and in vitro by Raman spectroscopy — From single cells to humans. Curr Opin Biotechnol. 2009; (20): 63–73.
  45. Yazdi SH, White IM. A nanoporous optofluidic microsystem for highly sensitive and repeatable surface enhanced Raman spectroscopy detection. Biomicrofluidics. 2012; (6): 14105–59.
  46. Sharma VK, Yngard RA, Lin Y. Green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009; (145): 83–96.
  47. Sun Y. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002; (298): 2176–9.
  48. Guerrero-Martínez A, Barbosa S, Pastoriza-Santos I, Liz-Marzán LM. Nanostars shine bright for you: colloidal synthesis, properties and applications of branched metallic nanoparticles. Curr Opin Colloid Interface Sci. 2011; (16): 118–27.
  49. Lim B, Xia Y. Metal nanocrystals with highly branched morphologies. Angew Chem Int Ed. 2011; (50): 76–85.
  50. Pietrobon B, Kitaev V. Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chem Mater. 2008; (20): 5186–90.
  51. Phan-Quang GC, Lee HK, Phang IY, Ling XY. Plasmonic colloidosomes as three-dimensional SERS platforms with enhanced surface area for multiphase sub-microliter toxin sensing. Angew Chem Int Ed. 2015; (54): 9691–5.
  52. Tien D-C, Liao C-Y, Huang J-C, Tseng K-H, Lung J-K, Tsung T-T et al. Novel technique for preparing a nano-silver water suspension by the arc-discharge method. Rev Adv Mater Sci. 2008; (18): 750–6.
  53. Gongalsky MB, Osminkina LA, Pereira A, Manankov AA, Fedorenko AA, Vasiliev AN et al. Laser-synthesized oxide- passivated bright Si quantum dots for bioimaging. Sci Rep. 2016; (6): 24732(1)–24732(8).
  54. Nadagouda MN, Varma RS. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem. 2008; (10): 859–62.
  55. Moulton MC, Braydich-Stolle LK, Nadagouda MN, Kunzelman S, Hussain SM, Varma RS. Synthesis, characterization and biocompatibility of "green" synthesized silver nanoparticles using tea polyphenols. Nanoscale. 2010; (2): 763–70.
  56. Hwang H, Chon H, Choo J, Park JK. Optoelectrofluidic sandwich immunoassays for detection of human tumor marker using surface-enhanced Raman scattering. Analyt Chem. 2010; (82): 7603–10.
  57. Li J-M, Ma W-F, Wei C, Guo J, Hu J, Wang C-C. Poly(styrene- co-acrylic acid) core and silver nanoparticle/silica shell composite microspheres as high performance surface-enhanced Raman spectroscopy (SERS) substrate and molecular barcode label. J Mater Chem. 2011; (21): 5992–98.
  58. Chen J-W, Lei Y, Liu X-J, Jiang J-H, Shen G-L, Yu R-Q. Immunoassay using surface-enhanced Raman scattering based on aggregation of reporter-labeled immunogold nanoparticles. Anal Bioanal Chem. 2008; (392): 187–93.
  59. Ma K, Yuen JM, Shah NC, Walsh JT, Glucksberg MR, Van Duyne RP. In Vivo, transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days. Anal Chem. 2011; (83) 9146–52.
  60. Pînzaru SC, Andronie LM, Domsa I, Cozar O, Astilean S. Bridging biomolecules with nanoparticles: surface‐enhanced Raman scattering from colon carcinoma and normal tissue. J Raman Spectrosc. 2008; (39): 331–4.
  61. Wang X, Qian X, Beitler JJ, Chen ZG, Khuri FR, Lewis MM et al. Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res. 2011; (71): 1526–32.
  62. Thomson PIT, Camus VL, Hu Y, Campbell CJ. Series of quinone- containing nanosensors for biologically relevant redox potential determination by surface-enhanced Raman spectroscopy. Anal Chem. 2015; 87 (9): 4719–35.
  63. Qu L-L, Li D-W, Qin L-X, Mu J, Fossey JS, Long Y-T. Selective and sensitive detection of intracellular O2(•-) using Au NPs/ cytochrome c as SERS nanosensors. Anal Chem. 2013; 85 (20):9549–55.
  64. Sivanesan A, Witkowska E, Adamkiewicz W, Dziewit Ł, Kamińska A, Waluk J. Nanostructured silver-gold bimetallic SERS substrates for selective identification of bacteria in human blood. Analyst. 2013; 139 (5): 1037–43.
  65. Vitol EA, Orynbayeva Z, Bouchard MJ, Azizkhan-Clifford J, Friedman G, Gogotsi Y. In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes. ACS Nano. 2009; 3 (11): 3529–36.
  66. Vitol EA, Brailoiu E, Orynbayeva Z, Dun NJ, Friedman G, Gogotsi Y. Surface-enhanced Raman spectroscopy as a tool for detecting Ca2+ mobilizing second messengers in cell extracts. Anal Chem. 2010; 8 (16): 6770–4.
  67. Zhang Q, Lu X, Tang P, Zhang D, Tian J, Zhong L. Gold nanoparticle (AuNP)-based surface-enhanced Raman scattering (SERS) probe of leukemic lymphocytes. Plasmonics. 2016; (11):1361–8.
  68. Berezhna S, Wohlrab H, Champion PM. Resonance Raman investigations of cytochrome c conformational change upon interaction with the membranes of intact and Ca2+-exposed mitochondria. Biochemistry. 2003; (42): 6149–58.
  69. Pankratova MS, Baizhumanov AA, Yusipovich AI, Faassen M, Shiryaeva TYu, Peterkova VA et al. Imbalance in the blood antioxidant systemin growth hormone-deficient children before and after 1 year of recombinant growth hormone therapy. Peer J. 2015; (3): e1055(1)–e1055(12).
  70. Brazhe NA, Baizhumanov AA, Parshina EYu, Yusipovich AI, Akhalaya MYa, Yarlykova YuV et al. Studies of the blood antioxidant system and oxygen-transporting properties of human erythrocytes during 105-day isolation. Human physiology. 2014; (40): 804–9.
  71. Rodan LH, Gibson KM, Pearl PL. Clinical Use of CSF Neurotransmitters J Pediatr Neurol. 2015; 53 (4): 277–86.
  72. Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev. 2004; 56 (3): 331–49.
  73. Goldstein DS, Kopin IJ, Sharabi Y. Catecholamine autotoxicity. Implications for pharmacology and therapeutics of Parkinson disease and related disorders. Pharmacol Ther. 2014; 144 (3): 268–82.
  74. Postuma RB, Gagnon JF, Vendette M, Montplaisir JY. Markers of neurodegeneration in idiopathic rapid eye movement sleep behaviour disorder and Parkinson’s disease. Brain. 2009; 132 (12): 3298–307.
  75. Subramaniam R. Pheochromocytoma — current concepts in diagnosis and management. Trends Anaesth Crit Care. 2011; 1 (2): 104–10.
  76. Yangong H, Shi C, Shahbaz M, Zhengchuan N, Wang J, Liang B et al. Diagnosis and treatment experience of rectal carcinoid (a report of 312 cases). Int J Surg. 2014; 12 (5): 408–11.
  77. Sadilkova K, Dugaw K, Benjamin D, Jack RM. Analysis of vanillylmandelic acid and homovanillic acid by UPLC-MS/MS in serum for diagnostic testing for neuroblastoma. Clin Chim Acta. 2013; (424): 253–7.
  78. Rodriguez MC, Rubianes MD, Rivas GA. Highly selective determination of dopamine in the presence of ascorbic acid and serotonin at glassy carbon electrodes modified with carbon nanotubes dispersed in polyethylenimine. J Nanosci Nanotechnol. 2008; 8 (11): 6003–9.
  79. Mazloum-Ardakani M, Khoshroo A. High performance electrochemical sensor based on fullerene-functionalized carbon nanotubes/ionic liquid: Determination of some catecholamines. Electrochem Comm. 2014; (42): 9–12.
  80. Rezaei B, Boroujeni MK, Ensafi AA. Fabrication of DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer electrochemical sensor for the determination of dopamine. Biosens Bioelectron. 2015; (66): 490–6.
  81. Gao N, Xu Z, Wang F, Dong SJ. Sensitive biomimetic sensor based on molecular imprinting at functionalized indium tin oxide electrodes. Electroanalisis. 2007; (19): 1655–60.
  82. Poliakov AE, Dumshakova AV, Muginova SV, Shekhovtsova TN. A peroxidase-based method for the determination of dopamine, adrenaline, and α-methyldopa in the presence of thyroid hormones in pharmaceutical forms. Talanta. 2011; 84 (3): 710–6.
  83. Huang H, Gao Y, Shi F, Wang G, Shah SM, Su X. Determination of catecholamine in human serum by a fluorescent quenching method based on a water-soluble fluorescent conjugated polymer-enzyme hybrid system. Analyst. 2012; 137 (6): 1481–6.
  84. Liu CH, Yu CJ, Tseng WL. Fluorescence assay of catecholamines based on the inhibition of peroxidase-like activity of magnetite nanoparticles. Anal Chim Acta. 2012; (745): 143–8.
  85. Schulze HG, Blades MW, Bree AV, Gorzalka BB, Greek LS, Turner RFB. Characteristics of backpropagation neural networks employed in the identification of neurotransmitter Raman spectra. Appl Spectrosc. 1994; (48): 50–7.
  86. Sharma B, Frontiera RR, Henry AI, Ringe E, Van Duyne RP. SERS: Materials, applications, and the future. Mater Today. 2012; (15): 16–25.
  87. Lim JW, Kang IJ. Fabrication of chitosan-gold nanocomposites combined with optical fiber as SERS substrates to detect dopamine molecules. Bull Korean Chem Soc. 2014; (35): 25–9.
  88. Lim JW, Kang IJ. Chitosan-gold nano composite for dopamine analysis using Raman scattering. Bull Korean Chem Soc. 2013; (34): 237–42.
  89. Tang L, Li S, Han F, Liu L, Xu L, Ma W et al. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Biosens Bioelectron. 2015; (71): 7–12.
  90. Lee NS, Hsieh YZ, Paisley RF, Morris MD. Surface enhanced Raman spectroscopy of the catecholamine neurotransmitters and related compounds. Anal Chem. 1998; (60): 442–6.
  91. Kneipp K, Wang Y, Dasari RR, Feld MS. Near-infrared surface- enhanced Raman scattering (NIR-SERS) of neurotransmitters in colloidal silver solutions. Spectrochim Acta. 1995; (51A): 481–7.
  92. Volkan M, Stokes DL, Vo-Dinh T. Surface-Enhanced Raman of dopamine and neurotransmitters using sol-gel substrates and polymer-coated fiber-optic probes. Appl Spectrosc. 2000; 54 (12): 1842–8.
  93. Barreto WJ, Barreto SRG, Ando RA, Santos PS, DiMauro E, Jorge T. Raman, IR, UV–vis and EPR characterization of two copper dioxolene complexes derived from L-DOPA and dopamine. Spectrochim. Acta Part A. 2008; 71 (4): 1419–24.