ORIGINAL RESEARCH

Associations between blood and cerebrospinal fluid flow impairments assessed with phase-contrast MRI and brain damage in patients with age-related cerebral small vessel disease

Kremneva EI1, Akhmetzyanov BM2, Dobrynina LA1, Krotenkova MV1
About authors

1 Research Center of Neurology, Moscow, Russia

2 PET-Technology LLC, Ufa, Russia

Correspondence should be addressed: Elena I. Kremneva
Volokolamskoe shosse 80, Moscow, 125367; ur.ygoloruen@avenmerk

About paper

Funding: this work was part of the state assignment for Research Center of Neurology.

Author contribution: Kremneva EI — methodology of the study, data analysis and interpretation, manuscript preparation; Akhmetzyanov BM — data acquisition, statistical processing and interpretation; Dobrynina LA — conception and methodology of the study, data interpretation, clinical data analysis and acquisition; Krotenkova MV — study supervision and methodology, data interpretation.

Received: 2019-07-28 Accepted: 2019-08-12 Published online: 2019-08-25
|
  1. Dumoulin CL, Yucel EK, Vock P, et al. Two- and three-dimensional phase contrast MR angiography of the abdomen. J Comput Assist Tomogr. 1990; (14): 779–84.
  2. Halperin JJ, Kurlan R, Schwalb JM, Cusimano MD, Gronseth G, Gloss D. Practice guideline. Idiopathic normal pressure hydrocephalus: Response to shunting and predictors of response. Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2015; (85): 2063–71.
  3. Ahmetzyanov BM, Kremneva EI, Morozova SN, Dobrynina LA, Krotenkova MV. Vozmozhnosti magnitno-rezonansnoj tomografii v ocenke likvornoj sistemy v norme i pri razlichnyh zabolevanijah nervnoj sistemy. Russian electronic journal of radiology. 2018; 8 (1): 145–66. Russian.
  4. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010; (9): 689–701.
  5. Shahparonova NV, Kadykov AS. Hronicheskie sosudistye zabolevanija golovnogo mozga: algoritm diagnostiki i lechenija. Consilium Medicum. 2017; 19 (2): 104–9.
  6. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 2013; (12): 483–97.
  7. Rost NS, Rahman RM, Biffi A, et al. White matter hyperintensity volume is increased in small vessel stroke subtypes. Neurology. 2010; (75): 1670–7.
  8. Gulevskaya TS. Patologija belogo veshhestva polusharij golovnogo mozga pri arterial'noj gipertonii s narushenijami mozgovogo krovoobrashhenija [dissertacija]. M., 1994.
  9. Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013; (12): 822–38.
  10. Kim KW, MacFall JR, Payne ME. Classification of white matter lesions on magnetic resonance imaging in elderly persons. Biol Psychiatry. 2008; (64): 273–80.
  11. Harper L, Barkhof F, Fox NC, Schott JM. Using visual rating to diagnose dementia: a critical evaluation of MRI atrophy scales. J Neurol Neurosurg Psychiatry. 2015; 86 (11): 1225–33. DOI: 10.1136/jnnp-2014-310090.
  12. Fazekas F, Chawluk JB, Alavi A, et al. MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. AJR Am J Roentgenol. 1987; 149 (2): 351–6.
  13. Pantoni L, Basile AM, Pracucci G, Asplund K, Bogousslavsky J, Chabriat H. et al. Impact of age-related cerebral white matter changes on the transition to disability: the LADIS study: rationale, design and methodology. Neuroepidemiology. 2005; 24: 51–62.
  14. Henry-Feugeas MC, Roy C, Baron G, Schouman-Claeys E. Leukoaraiosis and pulse-wave encephalopathy: observations with phase contrast MRI in mild cognitive impairment. J Neuroradiol. 2009; (36): 212–8.
  15. Schmidt R, Schmidt H, Haybaeck J, et al. Heterogeneity in age-related white matter changes. Acta Neuropathol. 2011; (122): 171–85.
  16. Shi Y, Wardlaw J. Update on cerebral small vessel disease: a dynamic whole-brain disease. Stroke and Vascular Neurology. 2016; (2): 83–92.
  17. Van der Veen PH, Muller M, Vincken KL, et al. Longitudinal relationship between cerebral small-vessel disease and cerebral blood flow: the second manifestations of arterial disease-magnetic resonance study. Stroke. 2015; (46): 1233–8.
  18. Poels MM, Zaccai K, Verwoert GC, et al Arterial stiffness and cerebral small vessel disease: the Rotterdam Scan Study. Stroke. 2012; (43): 2637–42.
  19. Kremneva EI, Akhmetzyanov BM, Gadzhieva ZSh, Sergeeva AN, Zabitova MR, Morozova SN, et al. Assessment of different pathogenetic mechanisms and disease progression in sporadic cerebral small vessel disease patients based on MRI STRIVE criteria. Neuroradiology. 2018; 60 (suppl 2): S430–S430.
  20. Shi Y, Thrippleton MJ, Marshall I, Wardlaw JM. Intracranial pulsatility in patients with cerebral small vessel disease: a systematic review. Clinical Science (London). 2018; 32 (1): 157–71.
  21. Bateman GA, Levi CR, Schofield P, et al. The venous manifestations of pulse wave encephalopathy: windkessel dysfunction in normal aging and senile dementia. Neuroradiology. 2008; (50): 491–7.
  22. Potter GM, Doubal N, Jackson CA, et al. Enlarged perivascular spaces and cerebral small vessel disease. Int J Stroke. 2015; (10): 376–81.
  23. Mestre H, Kostrikov S, Mehta RI, Nedergaard M. Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clinical science. 2017; (131): 2257–74.
  24. Vignes JR, Dagain A, Guerin J, Liguoro D. A hypothesis of cerebral venous system regulation based on a study of the junction between the cortical bridging veins and the superior sagittal sinus. Laboratory investigation. J Neurosurg. 2007; (107): 1205–10.
  25. Zabitova MR, Shabalina AA, Dobrynina LA, Kostyreva MV, Ahmetzyanov BM, Gadzhieva ZSh, i dr. Tkanevoj aktivator plazminogena i MRT-priznaki cerebral'noj mikroangiopatii. Annaly klinicheskoj i jeksperimental'noj nevrologii. 2018; 12 (4): 30–6.
  26. Charidimou A, Pantoni L, Love S. The concept of sporadic cerebral small vessel disease: A road map on key definitions and current concepts. Int J Stroke. 2016; 11 (1): 6–18.
  27. Greenberg SM, Vernooij MW, Cordonnier C. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol. 2009; (8): 165–74.
  28. Tsai HH, Pasi M, Tsai LK, et al. Microangiopathy underlying mixed-location intracerebral hemorrhages / microbleeds: A PiB-PET study. Neurology. 2019; 92 (8): e774–e781. DOI: 10.1212/ WNL.0000000000006953.
  29. Ahmetzyanov BM. Rol' narushenij krovotoka i likvorotoka v porazhenii golovnogo mozga pri cerebral'noj mikroangiopatii [dissertacija]. M., 2019.