ОБЗОР

CAR-терапия солидных опухолей: перспективные подходы к модулированию противоопухолевой активности CAR-Т-лимфоцитов

Информация об авторах

Российский научный центр рентгенорадиологии, Москва, Россия

Для корреспонденции: Яна Юрьевна Киселева
ул. Профсоюзная, д. 86, г. Москва, 117997; moc.liamg@avelesik.anay

Информация о статье

Вклад авторов в работу: Я. Ю. Киселева — анализ литературы, написание рукописи, подготовка рисунков, редактирование; А. М. Шишкин и А. В. Иванов — анализ литературы, редактирование; Т. М. Кулинич и В. К. Боженко — редактирование.

Статья получена: 03.10.2019 Статья принята к печати: 17.10.2019 Опубликовано online: 18.10.2019
|
  1. Palucka AK, Coussens LM. The Basis of Oncoimmunology. Cell. 2016; 164 (6): 1233–47. DOI: 10.1016/j.cell.2016.01.049. PubMed PMID: 26967289; PubMed Central PMCID: PMC4788788.
  2. Jena B, Dotti G, Cooper LJ. Redirecting T-cell specificity by introducing a tumor-specific chimeric antigen receptor. Blood. 2010; 116 (7): 1035–44. DOI: 10.1182/blood-2010-01-043737. PubMed PMID: 20439624; PubMed Central PMCID: PMC2938125.
  3. Klebanoff CA, Rosenberg SA, Restifo NP. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nature medicine. 2016; 22 (1): 26–36. DOI: 10.1038/nm.4015. PubMed PMID: 26735408; PubMed Central PMCID: PMC6295670.
  4. Park JH, Geyer MB, Brentjens RJ. CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood. 2016; 127 (26): 3312–20. DOI: 10.1182/ blood-2016-02-629063. PubMed PMID: 27207800; PubMed Central PMCID: PMC4929923.
  5. Liu B, Yan L, Zhou M. Target selection of CAR T cell therapy in accordance with the TME for solid tumors. American journal of cancer research. 2019; 9 (2): 228–41. PubMed PMID: 30906625; PubMed Central PMCID: PMC6405971.
  6. Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ. Toxicity and management in CAR T-cell therapy. Molecular therapy oncolytics. 2016; (3): 16011. DOI: 10.1038/mto.2016.11. PubMed PMID: 27626062; PubMed Central PMCID: PMC5008265.
  7. Tahmasebi S, Elahi R, Esmaeilzadeh A. Solid Tumors Challenges and New Insights of CAR T Cell Engineering. Stem cell reviews and reports. 2019; 15 (5): 619–36. DOI: 10.1007/s12015-019- 09901-7. PubMed PMID: 31161552.
  8. Minutolo NG, Hollander EE, Powell DJ, Jr. The Emergence of Universal Immune Receptor T Cell Therapy for Cancer. Frontiers in oncology. 2019; (9): 176. DOI: 10.3389/fonc.2019.00176. PubMed PMID: 30984613; PubMed Central PMCID: PMC6448045.
  9. Stoiber S, Cadilha BL, Benmebarek MR, Lesch S, Endres S, Kobold S. Limitations in the Design of Chimeric Antigen Receptors for Cancer Therapy. Cells. 2019; 8 (5). DOI: 10.3390/ cells8050472. PubMed PMID: 31108883; PubMed Central PMCID: PMC6562702.
  10. Urbanska K, Lanitis E, Poussin M, Lynn RC, Gavin BP, Kelderman S, et al. A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer research. 2012; 72 (7): 1844–52. DOI: 10.1158/0008-5472.CAN-11-3890. PubMed PMID: 22315351; PubMed Central PMCID: PMC3319867.
  11. Lohmueller JJ, Ham JD, Kvorjak M, Finn OJ. mSA2 affinity-enhanced biotin-binding CAR T cells for universal tumor targeting. Oncoimmunology. 2017; 7 (1): e1368604. DOI: 10.1080/2162402X.2017.1368604. PubMed PMID: 29296519; PubMed Central PMCID: PMC5739565.
  12. Tamada K, Geng D, Sakoda Y, Bansal N, Srivastava R, Li Z, et al. Redirecting gene-modified T cells toward various cancer types using tagged antibodies. Clinical cancer research: an official journal of the American Association for Cancer Research. 2012; 18 (23): 6436–45. DOI: 10.1158/1078-0432.CCR-12-1449. PubMed PMID: 23032741.
  13. Koristka S, Cartellieri M, Arndt C, Bippes CC, Feldmann A, Michalk I, et al. Retargeting of regulatory T cells to surface-inducible autoantigen La/SS-B. Journal of autoimmunity. 2013; (42): 105–16. DOI: 10.1016/j.jaut.2013.01.002. PubMed PMID: 23352111.
  14. Cartellieri M, Feldmann A, Koristka S, Arndt C, Loff S, Ehninger A, et al. Switching CAR T cells on and off: a novel modular platform for retargeting of T cells to AML blasts. Blood cancer journal. 2016; 6 (8): e458. DOI: 10.1038/bcj.2016.61. PubMed PMID: 27518241; PubMed Central PMCID: PMC5022178 directed to CD33, La and the UniCAR platform technology. AE, SL and MC are employed by GEMoaB and CPT, respectively. The other authors declare no conflict of interest.
  15. Pishali Bejestani E, Cartellieri M, Bergmann R, Ehninger A, Loff S, Kramer M, et al. Characterization of a switchable chimeric antigen receptor platform in a pre-clinical solid tumor model. Oncoimmunology. 2017; 6 (10): e1342909. DOI: 10.1080/2162402X.2017.1342909. PubMed PMID: 29123951; PubMed Central PMCID: PMC5665068.
  16. Feldmann A, Arndt C, Bergmann R, Loff S, Cartellieri M, Bachmann D, et al. Retargeting of T lymphocytes to PSCA- or PSMA positive prostate cancer cells using the novel modular chimeric antigen receptor platform technology "UniCAR". Oncotarget. 2017; 8 (19): 31368–85. DOI: 10.18632/oncotarget.15572. PubMed PMID: 28404896; PubMed Central PMCID: PMC5458214.
  17. Rodgers DT, Mazagova M, Hampton EN, Cao Y, Ramadoss NS, Hardy IR, et al. Switch-mediated activation and retargeting of CAR-T cells for B-cell malignancies. Proceedings of the National Academy of Sciences of the United States of America. 2016; 113 (4): E459–68. DOI: 10.1073/pnas.1524155113. PubMed PMID: 26759369; PubMed Central PMCID: PMC4743815.
  18. Riddell SR, Sommermeyer D, Berger C, Liu LS, Balakrishnan A, Salter A, et al. Adoptive therapy with chimeric antigen receptor-modified T cells of defined subset composition. Cancer journal. 2014; 20 (2): 141–4. DOI: 10.1097/PPO.0000000000000036. PubMed PMID: 24667960; PubMed Central PMCID: PMC4149222.
  19. Cao Y, Rodgers DT, Du J, Ahmad I, Hampton EN, Ma JS, et al. Design of Switchable Chimeric Antigen Receptor T Cells Targeting Breast Cancer. Angewandte Chemie. 2016; 55 (26): 7520–4. DOI: 10.1002/anie.201601902. PubMed PMID: 27145250; PubMed Central PMCID: PMC5207029.
  20. Cho JH, Collins JJ, Wong WW. Universal Chimeric Antigen Receptors for Multiplexed and Logical Control of T Cell Responses. Cell. 2018; 173 (6): 1426–38. DOI: 10.1016/j. cell.2018.03.038. PubMed PMID: 29706540; PubMed Central PMCID: PMC5984158.
  21. Scarfo I, Maus MV. Current approaches to increase CAR T cell potency in solid tumors: targeting the tumor microenvironment. Journal for immunotherapy of cancer. 2017; (5): 28. DOI: 10.1186/ s40425-017-0230-9. PubMed PMID: 28331617; PubMed Central PMCID: PMC5359946.
  22. Sioud M. Releasing the Immune System Brakes Using siRNAs Enhances Cancer Immunotherapy. Cancers. 2019; 11 (2). DOI: 10.3390/cancers11020176. PubMed PMID: 30717461.
  23. Boutros C, Tarhini A, Routier E, Lambotte O, Ladurie FL, Carbonnel F, et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nature reviews Clinical oncology. 2016; 13 (8): 473–86. DOI: 10.1038/nrclinonc.2016.58. PubMed PMID: 27141885.
  24. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and Transcriptomic Features of Response to Anti- PD-1 Therapy in Metastatic Melanoma. Cell. 2016; 165 (1): 35– 44. DOI: 10.1016/j.cell.2016.02.065. PubMed PMID: 26997480; PubMed Central PMCID: PMC4808437.
  25. Simon B, Harrer DC, Schuler-Thurner B, Schaft N, Schuler G, Dorrie J, et al. The siRNA-mediated downregulation of PD-1 alone or simultaneously with CTLA-4 shows enhanced in vitro CAR-T-cell functionality for further clinical development towards the potential use in immunotherapy of melanoma. Experimental dermatology. 2018; 27 (7): 769–78. DOI: 10.1111/exd.13678. PubMed PMID: 29704887.
  26. Martinez M, Moon EK. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Frontiers in immunology. 2019; (10): 128. DOI: 10.3389/fimmu.2019.00128. PubMed PMID: 30804938; PubMed Central PMCID: PMC6370640.
  27. Vivot A, Jacot J, Zeitoun JD, Ravaud P, Crequit P, Porcher R. Clinical benefit, price and approval characteristics of FDA-approved new drugs for treating advanced solid cancer, 2000– 2015. Annals of oncology: official journal of the European Society for Medical Oncology. 2017; 28 (5): 1111–6. DOI: 10.1093/ annonc/mdx053. PubMed PMID: 28453694.
  28. Medina PJ, Adams VR. PD-1 Pathway Inhibitors: Immuno- Oncology Agents for Restoring Antitumor Immune Responses. Pharmacotherapy. 2016; 36 (3): 317–34. DOI: 10.1002/phar.1714. PubMed PMID: 26822752; PubMed Central PMCID: PMC5071694.
  29. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. The New England journal of medicine. 2015; 373 (1): 23–34. DOI: 10.1056/NEJMoa1504030. PubMed PMID: 26027431; PubMed Central PMCID: PMC5698905.
  30. Postow MA, Sidlow R, Hellmann MD. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. The New England journal of medicine. 2018; 378 (2): 158–68. DOI: 10.1056/NEJMra1703481. PubMed PMID: 29320654.
  31. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition. Clinical cancer research: an official journal of the American Association for Cancer Research. 2017; 23 (9): 2255– 66. DOI: 10.1158/1078-0432.CCR-16-1300. PubMed PMID: 27815355; PubMed Central PMCID: PMC5413401.
  32. Yu Y, Wu H, Tang Z, Zang G. CTLA4 silencing with siRNA promotes deviation of Th1/Th2 in chronic hepatitis B patients. Cellular & molecular immunology. 2009; 6 (2): 123–7. DOI: 10.1038/cmi.2009.17. PubMed PMID: 19403062; PubMed Central PMCID: PMC4002649.
  33. Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ, Lim WA, et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Scientific reports. 2017; 7 (1): 737. DOI: 10.1038/s41598-017- 00462-8. PubMed PMID: 28389661; PubMed Central PMCID: PMC5428439.
  34. Ren J, Zhang X, Liu X, Fang C, Jiang S, June CH, et al. A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget. 2017; 8 (10): 17002–11. DOI: 10.18632/ oncotarget.15218. PubMed PMID: 28199983; PubMed Central PMCID: PMC5370017.
  35. Knochelmann HM, Smith AS, Dwyer CJ, Wyatt MM, Mehrotra S, Paulos CM. CAR T Cells in Solid Tumors: Blueprints for Building Effective Therapies. Frontiers in immunology. 2018; (9): 1740. DOI: 10.3389/fimmu.2018.01740. PubMed PMID: 30140266; PubMed Central PMCID: PMC6094980.
  36. Kerkar SP, Muranski P, Kaiser A, Boni A, Sanchez-Perez L, Yu Z, et al. Tumor-specific CD8+ T cells expressing interleukin-12 eradicate established cancers in lymphodepleted hosts. Cancer research. 2010; 70 (17): 6725–34. DOI: 10.1158/0008-5472. CAN-10-0735. PubMed PMID: 20647327; PubMed Central PMCID: PMC2935308.
  37. Pegram HJ, Lee JC, Hayman EG, Imperato GH, Tedder TF, Sadelain M, et al. Tumor-targeted T cells modified to secrete IL12 eradicate systemic tumors without need for prior conditioning. Blood. 2012; 119 (18): 4133–41. DOI: 10.1182/ blood-2011-12-400044. PubMed PMID: 22354001; PubMed Central PMCID: PMC3359735.
  38. Kerkar SP, Goldszmid RS, Muranski P, Chinnasamy D, Yu Z, Reger RN, et al. IL12 triggers a programmatic change in dysfunctional myeloid-derived cells within mouse tumors. The Journal of clinical investigation. 2011; 121 (12): 4746–57. DOI: 10.1172/JCI58814. PubMed PMID: 22056381; PubMed Central PMCID: PMC3226001.
  39. Zhang L, Morgan RA, Beane JD, Zheng Z, Dudley ME, Kassim SH, et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clinical cancer research: an official journal of the American Association for Cancer Research. 2015; 21 (10): 2278–88. DOI: 10.1158/1078-0432.CCR-14-2085. PubMed PMID: 25695689; PubMed Central PMCID: PMC4433819.
  40. Kunert A, Chmielewski M, Wijers R, Berrevoets C, Abken H, Debets R. Intra-tumoral production of IL18, but not IL12, by TCR-engineered T cells is non-toxic and counteracts immune evasion of solid tumors. Oncoimmunology. 2017; 7 (1): e1378842. DOI: 10.1080/2162402X.2017.1378842. PubMed PMID: 29296541; PubMed Central PMCID: PMC5739571.
  41. Alsaieedi A, Holler A, Velica P, Bendle G, Stauss HJ. Safety and efficacy of Tet-regulated IL12 expression in cancer-specific T cells. Oncoimmunology. 2019; 8 (3): 1542917. DOI: 10.1080/2162402X.2018.1542917. PubMed PMID: 30723575; PubMed Central PMCID: PMC6350686.
  42. Hoyos V, Savoldo B, Quintarelli C, Mahendravada A, Zhang M, Vera J, et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/ leukemia effects and safety. Leukemia. 2010; 24 (6): 1160–70. DOI: 10.1038/leu.2010.75. PubMed PMID: 20428207; PubMed Central PMCID: PMC2888148.
  43. Krenciute G, Prinzing BL, Yi Z, Wu MF, Liu H, Dotti G, et al. Transgenic Expression of IL15 Improves Antiglioma Activity of IL13Ralpha2-CAR T Cells but Results in Antigen Loss Variants. Cancer immunology research. 2017; 5 (7): 571–81. DOI: 10.1158/2326-6066.CIR-16-0376. PubMed PMID: 28550091; PubMed Central PMCID: PMC5746871.
  44. Hu B, Ren J, Luo Y, Keith B, Young RM, Scholler J, et al. Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL18. Cell reports. 2017; 20 (13): 3025–33. DOI: 10.1016/j.celrep.2017.09.002. PubMed PMID: 28954221; PubMed Central PMCID: PMC6002762.
  45. Chmielewski M, Abken H. CAR T Cells Releasing IL18 Convert to T-Bet(high) FoxO1(low) Effectors that Exhibit Augmented Activity against Advanced Solid Tumors. Cell reports. 2017; 21 (11): 3205–19. DOI: 10.1016/j.celrep.2017.11.063. PubMed PMID: 29241547.