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Интерфейс мозг–компьютер: будущее в настоящем

Brain-computer interface: the future in the present

Интерфейс мозг–компьютер (ИМК) — одна из самых многообещающих технологий в области лечения неврологичес-
ких заболеваний и травм. ИМК позволяет установить связь между неповрежденными участками мозга и протезами 
отсутствующих конечностей, носимыми нейропротезами, инвалидными креслами, искусственными органами чувств 
и  другими устройствами, компенсирующими утраченные функции. В настоящее время ИМК быстро развиваются 
благодаря бурному росту вычислительных мощностей, робототехники, методов записи сигналов мозга и математиче-
ских алгоритмов для их декодирования. Принято классифицировать ИМК на моторные (воспроизводящие движения), 
сенсорные (чувствительные) и двунаправленные (сенсорномоторные). Существуют также интерфейсы, интерпрети-
рующие или воздействующие на высшие нервные функции. По степени проникновения в биологические ткани ор-
ганизма выделяют инвазивные (глубоко проникающие) и неинвазивные (взаимодействующие лишь с поверхностью 
тела, но не проникающие) ИМК. Неинвазивные ИМК безопаснее и проще в использовании, но имеют ограничения по 
пропускной способности сигнала. Инвазивные же благодаря непосредственному контакту мультиэлектродных матриц 
с нейронными ансамблями без зашумления и дополнительных фильтрующих барьеров позволяют считывать сигна-
лы в высоком разрешении и локально стимулировать нервную ткань для передачи сигналов обратной связи в мозг. 
Технологии ИМК разрабатываются не только для индивидуального пользования, но и для выполнения коллективных 
задач при помощи мозгосетей.

Brain-computer interfaces (BCIs) are a promising technology intended for the treatment of diseases and trauma of the nervous 
system. BCIs establish a direct connection between the brain areas that remain functional and assistive devices, such as 
powered prostheses and orthoses for the arms and legs, motorized wheelchairs, artificial sensory organs and other technologies 
for restoration of motor and sensory functions. BCIs of various kinds are currently developing very rapidly, aided by the progress 
in computer science, robotic applications, neurophysiological techniques for recording brain activity and mathematical methods 
for decoding neural information. BCIs are often classified as motor BCIs (the ones that reproduce movements), sensory BCIs 
(the ones that evoke sensations), sensorimotor BCIs (the ones that simultaneously handle motor and sensory functions), and 
cognitive BCIs intended to regulate the higher brain functions. All these BCI classes can be either invasive (i. e. penetrating the 
body and/or the brain) or noninvasive (i.e. making no o little contact with the body surface). Noninvasive BCI are safe to use 
and easy to implement, but they suffer from signal attenuation by scalp and skin, its contamination with noise and artifacts, 
and an overall low information transfer rate. Invasive BCIs are potentially more powerful because they utilize implanted grids 
that can both record neural signals in high-resolution and apply stimulation to the nervous tissue locally to deliver information 
back to the brain. BCI technologies are being developed not only for individual use, but also for collective tasks performed by 
multiple interconnected brains.
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Ultimately, any mental activity is expressed as muscle 
contractions and relaxations that allow us to interact with 
the external world and each other: muscles control limb and 
eye movements, facial expression, and speech production. 
Muscle contractions are involved in practically any sensation. 

For example, we scan visual scenes with eye movements and 
move our hands to obtain tactile sensations.

The movements of our body are monitored by a large 
number of sensory receptors. The continuous streams of 
incoming (sensory) and outgoing (motor) signals are processed 
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at multiple levels of the nervous system, from the lowest to 
the highest. This immense sensory and motor processing is 
largely subconscious, and we take it for granted that we can 
effortlessly perform very complex tasks, such as walking upright, 
maintaining balance, moving fingers and toes, speaking, etc.

Unfortunately, the ability to move and sense can be severely 
impaired if the nervous system is damaged. Millions of people 
around the world suffer from sensory and motor deficits caused 
by spinal cord injuries, stroke, Parkinson’s disease, amyotrophic 
lateral sclerosis and other pathological conditions. Even in the 
cases of devastating deficits, very often higher brain regions 
retain their functionality but turn to be isolated from muscles, 
the result being the patient’s paralysis and inability to speak 
or feel.

Currently, there is no effective treatment for many motor 
and sensory disorders. Patients are bed - or wheelchair bound 
till the end of their lives. Development of effective rehabilitation 
methods and devices that compensate for the lost functions is 
an extremely important issue faced by modern medicine.

Artificial components for nervous system 

A brain-computer interface (BCI) is a promising tool for treating 
various neurological disorders. BCIs connect intact areas of the 
brain to assistive devices that can restore motor and sensory 
functions [1–5]. For example, patients paralyzed after a spinal 
cord injury could potentially restore mobility using a BCI that 
connects their intact motor cortex to robotic arms, exoskeletons 
or devices that apply functional electrical stimulation (FES) to 
the muscles. So far, there has been certain success in the 
development of such motor BCIs [6–9]. Moreover, patients can 
hope to restore sensitivity of paralyzed body parts with sensory 
BCIs that connect somatosensory areas of the nervous system 
to prostheses equipped with touch and position sensors. 
Such BCIs induce sensations by electrical stimulation of the 
somatosensory cortex.

Being of assistance to patients, BCIs can also be used by 
healthy individuals, for example, in computer games [10] or as 
an alarm clock for long-haul truck drivers [11]. In the latter case 
the drowsiness is detected using the encephalogram (EEG).

BCIs are often called brain-machine interfaces (BMIs). 
In general, these terms can be used interchangeably, but 
conventionally, noninvasive interfaces have been termed 
BCIs and invasive interfaces have been termed BMIs. 
“Neuroprosthesis” and “neuroimplant” are their synonyms. In 
this article the term BCI is used. 

Brain-computer interfaces belong to that knowledge 
area where the gap between science fiction and its practical 
implementation does not exceed 50 years. However, despite 
the fact that the number of publications on this subject has 
increased over the past few years, many BCI technologies 
are still at experimental stage, not used in clinical practice and 
not available in retail. The exception to that are some FES-
based systems [12] and cochlear implants [13, 14] that are 
successfully used for rehabilitation.

In this article we will cover motor and sensory BCIs. 
Classification of functions into sensory and motor is, however, 
oversimplistic. The brain of any organism does not have areas 
solely responsible for movements or sensations [15, 16]. That 
is why recently developed sensorimotor interfaces are the most 
ergonomic ones [17].

The history of research and BCI development

The initial experiments in monkeys date back to the mid-1960s. 

The monkeys were implanted with multi-electrode arrays for 
electrical stimulation and recording of cortical potentials [15, 18]. 
It was shown that the sensorimotor cortex was activated when 
monkeys performed movements; the electrical stimulation of 
the sensorimotor cortex, in turn, caused muscle contractions.

In 1963 Walter carried out an experiment in which the first 
BCI as we understand it now was implemented [19]. To assist 
clinical diagnosis, patients were implanted with electrodes in 
different cortical areas. They were asked to advance carousel 
projector slides by pressing a button. After discovering the 
cortex area responsible for reproducing that muscle pattern, 
the researcher connected it straight to the projector. The button 
was disconnected, but the slides kept on moving: the brain 
controlled slide advance and did it even before the subject 
pushed the disconnected button. 

An idea similar to the concept of modern BCIs was 
formulated by American researchers from the National 
Institute of Health in the late 1960s. They announced that they 
would focus on the development of principles and methods 
of controlling external devices by brain signals [20]. The 
researchers implanted electrodes to the motor cortex area 
of monkeys. The electrodes recorded action potentials of a 
few neurons while the animals were moving their hands [21]. 
The recorded neuronal discharges were transformed into the 
trajectory of movement of a hand using linear regression. It took 
another 10 years of effort to implement such transform in real 
time: the monkeys had learned to control the cursor on a LED 
display by activating their motor cortex neurons [22].

At that time a similar study was carried out under Fetz’s 
supervision [23], but the focus was on studying the biological 
feedback; the scientists faced the question: could a monkey 
control its neuronal discharges volitionally? It was found that 
volitional control of neurons responsible for movement was 
possible without performing the actual movement. That result is 
important for understanding the mechanisms of mirror neurons 
and even neurons involved in empathy. 

Parallel to the development of motor BCIs, sensory 
interfaces were emerging [14]. In 1957 French scientists 
Djourno and Eyriès succeded in inducing auditory sensations 
in deaf individuals using a single-channel electrode that 
stimulated the auditory nerve. In 1964 Simmons proposed 
a multi-channel upgrade for the device. In the 1970s House 
and Urban developed the device that consisted of an acoustic 
signal converter and a multi-channel cochlear implant. The 
device was approved by the US Food and Drug Administration. 
After further improvements, the device was introduced into 
clinical practice. 

In the 1980s a possibility of vision restoration using BCIs 
became the subject of the research. An electrode array was 
implanted over the visual cortex of totally blind individuals. 
Visual sensations induced during the experiment were termed 
phosphenes. People who had never seen light (or had not seen 
it for a long time) learned to identify simple phosphene patterns 
[24, 25]. At present electrically stimulated vision continues to 
be tested in clinical trials, where a complex image from a video 
camera is transmitted to the stimulating implants located in the 
eye or visual cortex.

A tremendous advance in BCI research took place in the 
1990-2000s. Nicolelis and Chapin constructed the first BCI for 
controlling a robotic device [26]. The recorded activity of the 
cortex and basal ganglia neurons of awake rats was transmitted 
to a robot that fetched water to animals. Then Nicolelis continued 
his research with primates. Primates were used in a number of 
research projects, such as a robotic arm controlled by cortical 
neuronal ensembles [27–29], a BCI establishing an artificial 
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tactile feedback [17], a BCI for decoding leg movements [30], 
BMI for bimanual movements [31], and others.

Also in the 1990s, experiments on implanting electrodes 
into human brain were launched. Kennedy, who implanted 
electrodes into his own brain in 2015, worked with a patient 
with amyotrophic lateral sclerosis. The patient was implanted 
with an electrode that contained myelinated fibers growth 
factor in the tip. As a result, the patient was able to issue a 
binary neural command [32].

In the early 2000s several laboratories began to compete 
in the area of invasive BCI development. A group headed by 
Donoghue worked with monkeys and humans; the researchers 
implanted multi-electrode arrays into human motor cortex, 
which allowed paralyzed individuals to control the cursor [8] 
and robotic manipulators [9]. Schwartz et al. studied movement 
control in three-dimensional space [33]. Eventually, success 
was achieved in the experiments with people controlling 
anthropomorphic robotic arm [7]; it is currently one of the most 
impressive achievements of BCI technology.

In the process of BCI development, many laboratories 
including those of Andersen, Shenoy and Vaadia, studied 
various cortical areas as signal sources for BCI and created 
new and original algorithms of decoding brain signals. 

Parallel to that, studies on noninvasive neurointerfaces were 
carried out. They were based on EEG recording, near-infrared 
brain imaging and FES. Birbaumer, Pfurtscheller, Walpaw, 
Müller, Schalk, Neuper, Kübler, Millan, and other researchers 
offered a number of practical solutions for wheelchair operation 
and limb mobility restoration after traumas and strokes [12].

Neuronal decoding and neuronal tuning 

How do motor BCIs manage to decode motor parameters 
from neuronal recordings? Many neurophysiological studies 
have shown that discharge rates of single cortical neurons are 
correlated to behaviors. For example, discharge rates of motor 
cortical neurons are correlated to the position, acceleration and 
the joint torques of the arm. Developers use such correlations for 
decoding neuronal signals. Reproducibility and recognizability 
of neural patterns, the so-called neuronal tuning, are a key 
factor for successful decoding. Neurons can be badly tuned 
or noise-contaminated, which impedes the decoding process. 

Investigations of encoding of various parameters by single 
neurons began in the 1950-1960s. Those studies utilized a 
single sharp-tipped electrode to record the extracellular activity 
of neurons in different brain areas. Somatosensory [34], motor 
[16] and visual [35] systems were studied using this approach. It 
became clear that even single neurons demonstrate repeatable 
activity patterns that encode a number of sensory and motor 
phenomena. 

Extracellular recording from single neurons in awake 
behaving animals continued in many laboratories around the 
world. Wise et al. discovered that cortical neurons modulate 
their rates several seconds before the actual movement. In their 
experiments, the monkeys knew what movement they had to 
make, but were trained not to make it before the trigger stimulus 
[36]. To study the transformation of visual stimuli on movement 
direction, Kalaska et al. recorded single neuron activity and 
employed a task in which a movement had to be executed after 
a delay [37]. Those experiments demonstrated that neuronal 
discharges contain information about the movements that 
are executed and those that are planned by the brain, but not 
initiated. 

Georgopoulos and his colleagues recorded activity patterns 
of single motor cortical neurons while monkeys made arm 

movements in different directions [38]. The researchers found 
the dependency between the signal intensity and movement 
direction that could be described by a cosine function, meaning 
that discharge frequency of neurons was maximal for a certain 
direction, called preferred direction, and reduced gradually 
when movements deviated from it. To explain how neuronal 
discharges transform into arm movement in a given direction, 
Georgopoulos suggested the concept of the population 
vector. Such vector is a vector sum of contributions from 
multiple neurons that has been shown to match the movement 
direction. Interestingly, even imagery of arm movement without 
its execution, such as imaginary 90° rotation in space, can be 
well described by a population vector [39].

Owing to these studies, it became clear that the activity of 
individual neurons carries information on behavior parameters 
and these parameters can be decoded. Neurophysiologists 
often use an audio speaker to monitor discharges of single 
neurons. An experienced neurophysiologist can tell what 
his monkey is doing by listening to the sound of discharges. 
Similarly, a BCI decoder “listens” to neurons and tries to infer 
what movement or intent underlies this “neuronal sound”. The 
more neurons are “heard” by the decoder, the more accurate 
is the decoding. 

What do neuron ensembles sing about?

The more “musicians” a neuronal ensemble consists of, 
the higher is the accuracy of decoding: increased neuronal 
sample enables to exclude occasional noisy fluctuations of 
single neurons [1, 2]. This does not mean that small neuronal 
populations are useless for BCIs. Sometimes a few neurons 
are enough for the interface to work [33, 40], particularly if 
those neurons are highly tuned to the parameter of interest. 
Highly tuned neurons are sometimes called grandmother 
cells or Jennifer Aniston neurons, because they are selectively 
activated by specific stimuli: grandmother’s or Jennifer Aniston’s 
photographs. [41]. If a BCI task is to identify the presence of a 
grandmother or Jennifer Aniston, such neurons come handy. 
However, they are quite rare, and in real life the brain processes 
information using highly distributed neuronal representations. 
The melody of single neurons gives the main idea of a behavior 
pattern, but its symphony is played by many instruments. 
The more neurons are recorded simultaneously, the more 
accurate is the encoding [2]. Because of that, multielectrode 
recording of neuronal activity from a large number of neurons 
is most effective for BCI decoding. It is especially important to 
record the signals of large neuronal ensembles if the task is 
to decode several behavioral parameters simultaneously [30]. 
Such ensemble recording improves decoding and maintains 
its stability [1].

Decoding algorithms

BCI decoders use statistical and machine-learning methods 
to reconstruct behaviors from neuronal activity. Initial decoder 
settings are based on a training set. In experiments with 
monkeys a 5-10-minute recording is necessary to obtain the 
training set. During this time interval, the animal performs the 
task manually, for example, moves the joystick with its hand 
[17, 28, 29], and the decoder “learns” to detect movement 
parameters (position, acceleration, force). Then the mode is 
changed to brain control, and the monkey performs the task 
(moves the cursor and places it over the target) using the 
decoder and not its own hands.
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A training set can be obtained without moving the 
hand. Instead, a subject observes a cursor movement or —
in experiments with humans — we ask him to imagine the 
movement. The latter approach is especially important if the 
participant of the study is paralyzed.

The choice of a decoding algorithm is dictated by the 
behavioral parameters that need to be extracted from neuronal 
activity and neural signal features used for decoding (single 
neuron activity, field potentials, etc.), the number of recording 
channels, the specifics of the behavioral task (for example, a 
continuous control of cursor position or, in contrast, making 
discrete decisions).

If decoding is based on population vectors, a training 
set often consists of movements from the center to different 
directions along the radius. Then a population vector is 
computed; it is a weighted vector sum of contributions from 
single neurons. Each neuron contributes a vector pointing 
in that neuron’s preferred direction, and the vector length is 
proportional to the neuron’s discharge frequency [39]. Despite 
some advantages, a clear conceptual framework being one of 
them, this method is not optimal because it is not based on 
statistical procedures that would optimize decoding accuracy. 

Wiener filter is a linear decoder which is very similar to 
the population vector, but it is much more accurate, since 
it minimizes the mean square error. Wiener filter output for 
time t is a weighted sum of neuron rates measured at different 
time points in the past (usually, 5-10 time points within a 
1-second time window preceding t) [42]. Weights are computed 
for each neuron using standard linear regression methods 
based on matrix algebra.

In many cases, for example, in the presence of stereotype 
movement patterns, another filter — Kalman filter — 
demonstrates better performance. Kalman filter separates 
variables into the sets of state variables (limb position or velocity) 
and observable variables (relation of neuronal discharge to 
movement direction). During the decoding process, the state 
vector is updated for discrete time steps (usually 50–100 
ms). During each update, two computations are performed: 
prediction of the next state and its correction based on neuronal 
activity data. Correction uses the model that compares an 
expectation of neuronal rates and the actually observed rates. 

Unscented Kalman filter improves estimation made with 
a classic Kalman filter by taking into account non-linear 
dependencies between neuronal activity and movements. 

Interestingly, research on neuronal decoding facilitates 
the development of new analytical mathematical methods of 
physiological interaction between the neurons. For example, 
artificial neural networks were both inspired by the organization 
of a nervous system and can be used for the interpretation of 
the activity of brain circuitry. Some laboratories use recurrent 
neural networks for decoding [43].

When solving tasks that imply a number of discrete 
solutions, discrete classifiers are used. EEG decoding of letters 
and numbers based on cortical potentials is one example 
[44, 45]. In BCI decoding, the following methods of machine 
learning have also found their application: Gaussian classifier, 
probabilistic classifier structures (Bayesian networks), hidden 
Markov models, k-nearest neighbour algorithm, artificial neural 
networks, multilayer perceptron, elements of fuzzy logic.

Theories of movement control and motor BCIs

To explain neuronal mechanisms of movements, several 
theories of movement control have been elaborated; they are 
also influential for BCI design. 

A classical scheme of movement control includes a set 
of hierarchically organized regions of nervous system. As 
suggested by this scheme, cortical structures are at the top of 
this hierarchy. They control the most complex movements, such 
as finger movements. Brain stem and spinal cord supervise 
simpler functions: postural automatisms and spinal reflexes 
[46]. The spinal cord of quadrupeds is known to contain central 
pattern generators that control rhythmic movements of the 
limbs  during walking [47].

Historically, motor control has been described as a 
set of reflexes for a long time. The concept of a reflex arch 
was proposed by Sherrington [46]. Currently, reflexes are 
acknowledged, but the emphasis has shifted to the top-down 
control exerted by the brain higher centers during volitional 
movements. Typical motor activity contains both voluntary 
and reflex components [48]. Some BCIs, called shared control 
BCIs, imitate these two components: they give the control over 
higher-level components (the onset and the end of movements, 
target choice) to the subject and delegate low-level tasks, such 
as maintaining balance, to a robotic controller.

Many modern theories of motor control are based on the 
idea that the brain forms an internal model of the body that 
is used for both perception of the body configuration and 
planning and executing movements. Such an internal model 
was first described by Head and Holmes as “body schema”, 
which the brain uses to monitor and update information of 
multiple signals from the body sensory receptors [49]. Currently, 
BCI developers strive to construct neurally controlled limb that 
can be finally incorporated into the brain body schema [1]. It 
is important to distinguish between the body schema and the 
body image. The body schema is a model constructed by the 
brain that reflects the structural and dynamic organization of 
the body, while the image is a conscious esthetic and sexual 
perception of one’s own body. 

From the concept of body schema the researchers moved 
on towards the modern internal model theory [50]. This theory 
describes two parts of the control loop: the controlled object (for 
example, an arm with muscles and joints) and the controller (a 
neuronal network that controls arm movements). The controller 
uses an internal model to generate an expectation of the object 
position, as well as an expectation of sensory feedback. The 
controller then compares these expectations with the actual 
sensory feedback and, if a discrepancy is found, introduces 
corrections to the object state. The equilibrium point hypothesis 
describes one implementation of this view [51]. According to it, 
higher motor centers set an equilibrium point for the controlled 
object, and servo-mechanisms of the spinal cord transfer the 
object there. 

Arm BCI

Arm movements constitute the major part of motor repertoire 
of our everyday lives. That is why many BCI developers focus 
on the task of arm control. Besides, arm movements have a 
substantial cortical component to them, which is convenient for 
the developers, because it is easier to record the signals of the 
cortex than those of subcortical structures. 

Figure 1 shows the interface that reproduced arm 
movements. It was an invasive BCI that monkeys used to 
control a robotic arm performing reaching and grasping 
movements. For decoding, multiple Wiener filters running in 
parallel were used. 

In another experiment with monkeys, stereoscopic glasses 
were used to enable BCI control in a three-dimensional 
space [33]. Motor cortical activity was translated into cursor 
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Fig. 1. A BCI-based robotic arm capable of grasping objects

Extracellular activity of cortical neurons was recorded by a multi-electrode array implanted into several cortical areas of the monkey. Signals were decoded using Wiener 
filters and then transmitted to the robotic arm controller. On the screen, the monkey was presented with a cursor that changed its size depending on the gripping force 
the animal applied. The task was to reach toward a virtual object after it appeared on the screen and to grasp it. In one task the monkey controlled the robot using a 
hand-held joystick with two degrees of freedom, and the gripping force was determined by how strongly the joystick was gripped. In another task the joystick was not 
connected to the robot, and the robot was controlled directly by the commands issued by the motor cortex (Carmena et al., [28]). 
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linear fit

Visual 
feedback 

loop

Real-time 
predictions 
via server

Client

Position 
velocity force

Robot arm + gripper

position in space. Decoding was initially performed using the 
above mentioned method of population vectors. In further 
experiments, system accuracy was improved by applying 
the adaptive algorithm that minimized trajectory errors. Later, 
the same group of researchers demonstrated a BCI which 
monkeys used to feed themselves with the robotic arm [52]. 
Similar technologies involving robotic arms are currently used 
to improve the quality of life of paralyzed patients [7, 9].

Also, virtual technologies have been developed, such as a 
pair of virtual arms moving on the computer screen and a BCI 
for their control [31]. In those experiments several hundreds 
of electrodes recorded neuronal activity in both cortical 
hemispheres, which enabled monkeys to control two arms 
simultaneously.

Functional electrical stimulation

Robotic BCIs are necessary in case of limb loss, but if limbs are 
paralyzed but not lost, it is possible to use FES. This technology 
utilizes electrode arrays for electrical stimulation of muscles with 
a set of impulses that imitate nervous system signals. Muscles 
activation by stimulation, in turn, produces limb movements. 
For surface stimulation, a multi-electrode array is placed 
on patient’s skin. Such contact electrodes can be sewn into 
clothes turning them into wearable electronic devices (gloves, 
trousers, etc.) [53]. Control over BCI can be performed by EEG 
beta oscillations, and that is how the movements of a paralyzed 
hand have been reproduced [54].

Using invasive BCIs, a paralyzed monkey hand was 
moved by FES, the movements being quite precise [40]. In the 
experiments involving FES for a larger number of muscles and 
decoding over a hundred of neurons, monkeys with paralyzed 
arms could perform grasping [55, 56]. Recently, such invasive 
BCI–based control has been demonstrated by a paralyzed 
human [6].

According to the experimental data, a part of lower-level 
functions, such as adjusting the limb position in the external 
force field, can be handed over to the local self-control. In this 

case, feedback systems are used, such as position sensors 
[57]. FES-based BCIs can take into account the specifics of 
muscle contractile properties. For feedback, vision can be used 
[53], as well as sensory substitution with vibrostimulation.

BCIs for bipedal locomotion

A possibility of reproducing kinematic parameters of bipedal 
walking based on brain cortical activity recording was first 
tested by Fitzsimmons, Lebedev and their colleagues [30]. 
The schematics of this experiment are presented in figure 2. 
Monkeys were trained to walk on a treadmill. During this task, 
neuronal activity of sensorimotor cortex representation of lower 
limbs was recorded while the movements of the monkey’s legs 
were video tracked. The BCI decoder was trained to decode 
monkey lower limb kinematics. The decoder performed well for 
both forward and backward walking directions. 

Based on those results, the Walk Again Project was founded, 
an international consortium, the goal of which is to develop an 
exoskeleton driven by the brain [2]. Nicolelis demonstrated 
the EEG-controlled exoskeleton built by Gordon Cheng at the 
opening of World Football Cup in 2014. A similar project, the 
Mindwalker, emerged in Europe [58]. In parallel, Contreras 
Vidal and his colleagues proposed an idea of developing a 
leg exoskeleton controlled by slow EEG rhythms; in 2012 they 
decoded gait kinematics of a human walking on the treadmill 
[59]. In Russia, ExoAtlet, a very practical leg exoskeleton, was 
developed [60].

As an alternative to EEG, a possibility of reactivating the 
spinal central pattern generator is studied. It was demonstrated 
in the experiments on rat models of complete spinal cord 
injury that locomotion can be restored using epidural electrical 
stimulation combined with treatment with serotonergic 
agonists [61]. 

Nueroplasticity and BCIs

Many studies have convincingly demonstrated that learning to 
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Fig. 2. Reproduction of kinematics of bipedal walking based on ensemble cortical activity 

Activity of neuronal ensembles of monkey sensorimotor cortex was recorded while the animals were walking on a treadmill. Blue curves represent movements recorded 
by video tracking system; red curves represent decoded movement (Fitzsimmons et al., [30]).
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use a BCI boosts the plasticity of the subject’s brain. It was 
speculated that due to that phenomenon, artificial limbs could 
become incorporated into the brain representation of the body 
and eventually feel and act as normal limbs [1, 62].

Controlling external devices by BCIs has a lot in common 
with tool use. Thus, in a famous experiment with monkeys 
trained to use rakes to retrieve distant objects [63], it was shown 
that posterior parietal cortex neurons that normally respond to 
objects in the vicinity of the hand started to respond to objects 
in the vicinity of rakes. In other words, the brain incorporated 
the rakes into the body schema. 

Long-term use of BCIs can lead to similar changes in the 
brain. Indeed, the neurons participating in BCI control change 
activity patterns [64]. Correlations between pairs of neurons 
also change [28, 31], as well as neuronal tuning to movement 
directions [29].

Noninvasive BCIs

An important requirement for BCIs is safety. Noninvasive BCIs 
are the safest, as they do not penetrate biological tissues to 
record neuronal activity. Numerous types of noninvasive BCIs 
have been developed so far, mainly for operating wheelchairs 
and restoring communicative function by using spelling systems 
[44, 45, 65–68].

EEG recording is the most popular method used for the 
development of noninvasive BCIs. EEG-based BCIs can be 
independent (based on endogenous activation by motor 
imagery) and dependent (based on exogenous activation by 

external stimuli). In the former case, slow cortical potentials, 
mu (8–12 Hz), beta (18–30 Hz) and gamma rhythms (30–70 Hz) 
are used to exert control [4]. The effectiveness of the method 
can be improved by using adaptive decoding algorithms [69]. 
With exogenous activation, the attention is focused on the 
external visual stimulus, which leads to a conspicuous cortical 
response, compared to the response to an ignored stimulus; 
the patient’s intentions are decoded based on the previously 
recorded difference in the response to attended and ignored 
stimuli. Thus, during BCI control based on steady-state visually 
evoked potentials, a reaction to frequently presented stimuli is 
recorded [70]. The subject is presented with several objects 
on the screen. Each object appears and disappears at its own 
frequency. The subject focuses on each object, one by one. 
P300 potentials can be used in a similar way [71].

Artifacts of EEG recording process present a considerable 
problem. They can be taken for neural activity and even serve 
as controlling signals. Dependent BCIs are less sensitive to 
artifacts. A better signal quality, compared to EEG, a higher 
spatial and temporal resolution and a lower sensitivity to 
artifacts are demonstrated by electrocorticographic BCIs.  
However, they are invasive. 

Apart from EEG, magnetic encephalography is used (MEG) 
[72]. To register weak magnetic field generated by the brain, 
a highly sensitive method is required. Such sensitivity can be 
provided by superconducting quantum magnetometers. As a 
result, MEG recording requires special equipment and special 
conditions, magnetic shielding in the first place. Still, MEG 
provides a better temporal and spatial resolution, compared 
to EEG. 
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Another method for brain activity recording is based on 
detecting the levels of oxyhemoglobin and deoxyhemoglobin 
in cerebral circulation by using near-infrared spectroscopy 
(NIRS) with temporal resolution of 100ms and spatial resolution 
of 1 cm. The major disadvantage of this technology is a 
considerable signal delay (up to several seconds). However, the 
BCIs based on NIRS are becoming popular [73].

A powerful tool for recording changes in cerebral circulation 
is functional magnetic resonance imaging. Its temporal 
resolution is limited to 1–2 s, signal delay is about several 
seconds, but it stands out in the line of noninvasive methods 
because of its unsurpassed spatial resolution that makes it 
possible to detect the activity of every brain area [73].

Sensory BCIs
 
Sensory BCIs can be used for restoring vision, hearing, the 
sense of taste, smell or balance, and tactile and proprioceptive 
sensitivity. Functions of sensory organs can be impaired 
as a result of peripheral nervous system damage leading to 
complete loss of senses (deafness, blindness) and as a result 
of damage to the organs that process sensory information of a 
higher level (thalamus, cerebellum, basal ganglia, brain cortex); 
the latter does not cause a complete loss of sensitivity, though. 
An interesting example is blindsight in patients with damaged 
visual cortex; they are blind but still can sense and process 
visual stimuli subconsciously [74].

At present, sensory BCIs cannot replace high-level 
components of a sensory system. For example, blindsight 
cannot be repaired. Currently, researchers focus on developing 
devices for repairing low-level damage associated with 
peripheral areas and receptors dysfunction. Such systems 
replace physiological sensors with artificial ones that are 
connected to undamaged sensory areas [17, 75, 76]. Signal 
transmission from artificial sensors to the nerve tissue is usually 
mediated by electrical stimulation, but recently optogenetic 
methods have gained popularity [77].

We should also mention sensory substitution, a method in 
which a signal flow from an artificial sensor is redirected to the 
undamaged sensors of other body parts or another sensory 
organ. With such sensory substitution, a switch from one 
sensor modality to another becomes possible. For example, 
artificial vision can be implemented by transmitting the signal 
from a video camera to a tactile matrix that stimulates the 
back [78].

Cochlear implants

Cochlear implants are the most successful devices among 
sensory BCIs [13, 14]. Patients with such implants can detect 
speech, tell female voices from male voices and even perceive 
melodies. Bilateral implantation restores spatial hearing. The 
implant consists of six components: (1) an external microphone, 
(2) a speech processor that transforms the signal from the 
microphone to a stimulation sequence, (3) a transmitter placed 
on the skin, (4) a receiver and a stimulator implanted into the 
bone under the skin (5), a cable connecting stimulators with the 
electrodes, and (6) an array of stimulation electrodes implanted 
into the cochlea.

A sequence of impulses is applied to undamaged areas of 
the auditory nerve. The use of several electrodes enables to 
stimulate various areas of the nerve; the number of electrodes 
usually varies from 4 to 22. Several different methods of signal 
formation by multichannel stimulation were developed. In 
continuous interleaved sampling, a signal from a microphone 

is transformed into a frequency spectrum and the intensity of 
the signal in each band is transformed into the intensity of a 
stimulus. Compression of a wide dynamic range of signals 
into a narrow range of stimuli is performed using non-linear 
transform. Also, there are systems based on the continuous 
analysis of a signal from a microphone where an electrode is 
selected for signal transmission in a recurrent cycle. 

For patients with severely damaged cochlear, brain stem 
implants have been developed [13]. These devices stimulate 
the cochlear nucleus of the brainstem by means of surface 
or penetrating electrodes. Some patients who tested such 
implants reported a low quality of sound recognition, while in 
the others the device performance was comparable to cochlear 
implant performance.

Visual prosthesis

Visual prostheses are currently capable of restoring simple 
visual sensations [79]. Visual prostheses can be divided into 
two groups: retinal prostheses and brain prostheses. Retinal 
prostheses are used for treating pathologies that do not affect 
the visual nerve, while brain prostheses are used if the visual 
nerve is damaged, and it is necessary to stimulate visual 
structures of the brain, such as the visual cortex, to evoke 
visual sensations.

Depending on the severity of retinal damage, several types 
of retinal prostheses can be used. Epiretinal implants stimulate 
nerve fibers of retinal ganglion cells by intraocular electrode 
arrays (up to 60 channels) that receive frames from a video 
camera. We expect that in the future all components of such 
prostheses will be implanted inside the eye. Patients with such 
implants can perceive the shape of objects, the brightness of 
colors and movement direction.

Subretinal prostheses stimulate ganglion and bipolar 
cells by electrical signals. They consist of thousands of 
microphotodiodes that respond to the level of illumination and 
transmit this information to the electrode array.  The studies of 
these devices are currently at an early experimental stage. 

In a transchoroidal prosthesis several dozens of stimulating 
electrodes are implanted under the choroid. Compared to 
others, this device can be implanted by a quite simple surgical 
procedure. Patients perceive stimuli as phosphenes and can 
detect simple objects.

As a rule, in non-retinal prostheses electrical stimulation 
of visual cortex is used. In 1974 simple visual perception was 
restored by implanting 64 electrodes onto the surface of the 
visual cortex [25]. It is possible that intracortical microelectrode 
arrays can yield better results. 

Bidirectional BCIs (brain-computer-brain interface)

Biderictional, or sensor-connected BCIs decode brain activity 
and simultaneously transmit artificial sensory signals to the 
brain, thus creating a feedback loop. Figure 3 shows the 
schematics of the first brain-computer-brain interface (BCBI) 
designed in Nicolelis laboratory by O’Doherty, Lebedev and 
their colleagues [80]. Microelectrode arrays were implanted into 
motor and somatosensory cortex of monkeys. The first array 
recorded intentions, the second one transmitted artificial tactile 
sensations back to the brain using intracortical microstimulation. 
The BCBI allowed monkeys to explore a virtual object using 
a cursor or a realistic image (avatar) of monkey’s arm. Virtual 
objects looked alike but had different texture; texture data were 
transmitted to the brain through microstimulation.  
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Fig. 3. The schematics of the first brain-computer-brain interface 

The motor area of the control loop sets the cursor in motion. The desired position 
of the cursor is decoded on the basis of motor cortical activity. The sensory part 
of the loop serves as a feedback tool. It transmits artificial tactile signals into 
somatosensory cortex through intracortical microstimulation (O'Doherty et al. 
[80]).
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Fig. 4. Integration of brain activity of several subjects using a brain net 

Each monkey was seated in a separate room and watched a virtual arm on 
the screen; the task was to touch the object using the virtual arm (A). Signals 
from various cortex areas were recorded by a 700-channel invasive electrode 
array. After decoding, the signals were sent to the virtual arm, with monkeys 
contributing to coordinates equally (B) or with each monkey controlling only 
one coordinate (C) or one plane (D). The tasks were performed more effectively 
compared to the experiment where only one animal controlled the virtual arm 
(Ramakrishnan et al., [81]).
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Brain-net

Networks that connect separate nervous systems have 
recently become a popular subject of research. In general, the 
task is to create the network that would combine knowledge 
and effort of several individuals for more effective problem 
solving. Among such distributed networks are a neuron-net 
(a community of people and technologies that use neuronal 
signals for communication), a body-net (a net in which the 
movements of one individual can be transmitted to another 
through FES) and a brain-net (an integration of several brains 
by BCI-technologies [81], fig. 4).

CONCLUSIONS

We are witnessing a rapid growth of BCI technologies. 
Researchers keep reporting new achievements and are making 
further progress in the development of methods and devices 
that will help to restore the lost functionality of the human 
body. With long-term use of a BCI, an artificial limb can be 
incorporated into the body schema formed by the brain. Many 
BCI projects are currently at the stage of lab experiments, but 
there are a few devices that have been successfully introduced 
into clinical practice. We envision the future in which a blind, 
deaf and paralyzed patient can live a life of a healthy person, 
assisted by neural implants and functional electrical stimulation. 
Using BCIs for network communication, the mankind can rise 
to a new level, the most recent projects on creating the “internet 
of bodies and minds” being the first attempt toward that goal. 
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