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Разработка нейроустройства с биологической обратной связью 
для восполнения утраченных двигательных функций

Development of a neurodevice with a biological feedback 
for compensating for lost motor functions 

Одновременное использование электрофизиологических сигналов нескольких типов (данных электроэнцефалограм-
мы (ЭЭГ), электромиограммы (ЭМГ), электроокулограммы (ЭОГ) и др.) обеспечивает более высокую эффективность 
систем управления внешними устройствами — нейропротезами, экзоскелетами, роботизированными инвалидными 
креслами и телеуправляемыми роботами. В статье представлены результаты первых испытаний многофункционально-
го нейроустройства, способного распознавать одновременно ЭЭГ-, ЭМГ- и ЭОГ-сигналы (последние — с подключением 
модулей фотоплетизмограммы, SpO2 и температуры). Результаты измерений сигналов с помощью разработки срав-
нивали с данными прибора KARDi3 («Медицинские компьютерные системы», Россия) и мультиметра Fluke 17b с под-
ключаемым термистором (Fluke Corporation, США). По информативности и точности данные были сопоставимы. Также 
исследовали эффективность гибридизации ЭЭГ- и ЭМГ-сигналов с помощью нейроустройства: она позволила увели-
чить точность классификации у всех испытуемых в среднем на 12,5 % — до среднего значения 86,8 % (от 75 до 97 %).

Concurrent use of electrophysiological signals of various types, such as obtained from electroencephalogram (EEG), 
electromyogram (EMG), electrooculogram (EOG), and others, increases the effectiveness of systems for external device control, 
namely, neural prostheses, exoskeletons, robotic wheelchairs and teleoperated robots. This article presents the results of 
the first tests of a multifunctional neurodevice capable of detecting EEG, EMG and EOG signals simultaneously (with EOG 
signals, photoplethysmogram, SpO2 and temperature modules of the neurodevice were used). Measurement results were then 
compared to the data obtained from KARDi3 device (Medical Computer Systems, Russia) and Fluke 17b multimeter with a 
plug-in thermistor (Fluke Corporation, USA). The informative value and accuracy of both datasets were comparable. We also 
studied the effectiveness of EEG and EMG signal hybridization on the basis of the neurodevice of interest; it allowed for an 
increase of classification accuracy in all subjects by an average of 12.5 % up to the mean of 86.8 % (from 75 to 97 %).
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Applied biorobotics improves the quality of life in patients 
with neurological disorders and traumas. Neuroprostheses, 
exoskeletons, robotic wheelchairs and telecontrol robots 
contribute to rehabilitation of patients, substitute for lost 
functions and enhance physical abilities of healthy people.

Choosing the right control scheme is very important for the 
development of such devices. It must ensure the accuracy, 
stability and safety of the device performance, given that 
the device will be used continuously. The majority of existing 
solutions are based on recording human body biopotentials 
using electromyography (EMG), electroencephalography 
(EEG), electrooculography (EOG) and electrocardiography 
(ECG) [1–6].

Robotic wheelchairs, prostheses and exoskeletons are 
good examples of the effectiveness of EMG-based schemes 
[7–9]. However, EMG alone is not enough if an individual 
who had a stroke or a spinal cord injury cannot generate a 
muscle signal of the required intensity. In such cases we turn 
to brain-computer interfaces (BCIs) that transform signals from 
damaged brain areas into commands for external devices. One 
of the recent works [10] has demonstrated a high effectiveness 
of a BCI for neuroprosthesis control tested by a tetraplegic 
patient with intact sensory and cognitive functions.

Among various methods of brain signals recording, EEG 
is the most convenient due to its availability, safety, cost-
effectiveness and portability. The brain cortex consists of 
multiple areas of functional specialization in which waves of 
different frequency are observed [11]. The EEG spectrum is 
unique for every individual and changes constantly depending 
on a person’s physiological condition and the activity performed, 
as long-term measurements have proved [12] By decoding 
EEG signals, we can discriminate between limb movements 
quite accurately. For example, the algorithm proposed for the 
reconstruction of the trajectory of finger joint angles during 
reach to grasp movements ensured 76 % accuracy of EEG 
signal [13]. Another work showed that it was possible to 
correctly identify one out of five actual or imaginary movements 
of the wrist and fingers with 65–71 % accuracy [14]. 

For better classification accuracy,a large number of EEG 
channels is thought to be necessary. However, Yang et al. [15] 
were able to remove irrelevant noise and improve the EEG 
signal classification technique that can be applied to a neural 
network or used for robotic device control. EEG was recorded 
with only 6 channels out of 32; still, the classification accuracy 
reached 86 % in some motor tasks. However, EEG-based 
BCIs have certain drawbacks resulting from incorrect electrode 
placement, shifting of electrodes, noises, artifacts, imperfect 
algorithms of filtration and signal processing. 

Some researchers suggested that EMG and EEG methods 
should be fused [16–18]. For example, in case of paresis or 
limb loss, EEG signals can be used to compensate for weak 
EMG signals, ensuring that a prosthesis or exoskeleton is 
moved by mental effort. If EMG signals are of normal intensity, 
EEG signals can help reduce the impact of tremor, fatigue or 
artifacts.

Leeb et al. [19] proposed a hybrid EEG-EMG-based control 
system; it was tested on 6 healthy individuals. The subjects 
moved their left or right arm for 5 seconds (there were 60 trials 
in total). Brain activity was recorded by 16 sensors placed in 
accordance with the international 10–20 system. Muscular 
activity was recorded over left and right forearm flexors and 
extensors. The obtained EMG signals were rectified and 
averaged (0.3 s) to get the envelopes. The data from two 
classifiers were fused together to get one control signal. 
The hybrid system showed high classification accuracy in 

all subjects. Despite the fact that EMG signals were quite 
informative (classification accuracy was 83 % in average), the 
hybrid approach was more effective (classification accuracy 
was 91 %), especially in case of increasing muscle fatigue.

Xie et al. also developed a hybrid EEG-EMG-based BCI 
(visualization of movement intention) [20]. Their study enrolled 
10 post stroke patients with non-severe hemiparesis, 10 
patients with peripheral nerve injury and 10 healthy individuals. 
All patients were between 20 and 58 years of age. For 
calibration, subjects were asked to lie on the bed and perform 
knee flexion and extension tasks. The sensor measured the 
angle and the force of movements; the obtained data were 
later used as target levels. Then EEG/EMG sensors were 
attached, and the experiment was carried out. The aim of the 
experiment was to establish the correlation between EEG/EMG 
signals and leg movements and to measure the accuracy of 
potential control commands for the external device. First, EEG 
data were processed followed by EMG data processing; in the 
third experiment the hybrid approach was applied. The results 
showed that the hybrid approach led to increased classification 
accuracy in all groups of subjects, compared to single modality 
approach. In healthy individuals, classification accuracy was 
98 %, in post stroke patients — 84 %, for patients with 
peripheral nerve injury — 85 %.

Kiguchi et al. [21] carried out a study of a hybrid EEG-EMG 
system for controlling arm movements using SUEFUL-7 robotic 
device, and assessed its effectiveness [22].  The robot was 
equipped with a video camera and could detect arm position by 
rotational angle and force sensors. A 16-channel EMG interface 
for recording signals coming from arms and shoulders was 
used as a control system. The experiment enrolled four 23-year-
old healthy individuals. Some of them wore an exoskeleton and 
a device for EEG recording and response monitoring.  In the 
first experiment, the subjects performed arm flexion/extension 
tasks, and the robot did the opposite impeding the movement. 
In the second experiment, one full and two empty cups were 
put on the table. When the subject grasped the empty cup, 
the robot used the assistance algorithm that estimated the 
position of empty cups using the video camera, and randomly 
selected one of them; after that, the robot assisted the subject 
in pouring the liquid. The accuracy of choice was assessed 
using EEG and EMG signals. If the subject did not resist, the 
robot inferred that the target had been chosen correctly. In that 
experiment, the flexibility of the robot and its ability to correctly 
interpret the intentions of the subject were tested. The results 
showed the increased accuracy of interpretation of human 
actions by the robot.

BCI performance can be improved by oculography data 
recorded parallel to EEG. A group of scientists designed a 
hybrid EEG-EOG-based BCI to enhance the reliability of hand 
exoskeleton for continuous grasping movements [23]. EEG 
signals were recorded at 5 EEG sites in accordance with the 
international 10–20 system. The experiment consisted of two 
parts. In the first part, the subjects controlled the exoskeleton 
through EEG signals only; they made grasping movements 
when the visual indicator appeared (green for the movement 
onset, red for rest). The robotic hand opened automatically if 
the commands issued by the operator’s brain were not intense 
enough to get over a preset threshold. In the second part of 
the experiment, EOG signals were used as a switch. When the 
subject looked to the left or to the right, the exoskeleton hand 
opened regardless of EEG signals. The hybrid model increased 
system safety. When only EEG signals were used, the motion 
of the robotic hand exceeded 25 % of a full hand closing in half 
of subjects at rest. The hybrid system showed the increase in 
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the threshold value in 10.4 % of subjects, with maximal grasp 
being less than 28 % of a full hand closing (in a single modality 
system it was 60 %) .

Cardiovascular system performance is usually assessed 
by monitoring arterial blood pressure and heart rate (HR); it 
correlates to brain activity, including that, during motor tasks 
[24–26]. Studies of the effect of changing mental activity 
on heart activity assessed by EEG show that hybrid EEG-
ECG systems are a promising practical tool [27–29]. In the 
experiment involving 6 healthy right-handed men (mean age 
was 28 years), who imagined movements of their left leg or 
left arm, researchers assessed classification accuracy of EEG 
signals and ECG signals separately; then a fused EEG-ECG 
recording was processed [29]. For every subject, 180 sessions 
were held (60 sessions for each assessment method). They 
consisted of three parts; the subject rested for the first 6 
seconds (while, data from previous sessions were processed); 
then the subject was presented with an indicator that randomly 
indicated the action that the subject had to perform (arm or 
leg movement visualization or rest); that part of the experiment 
lasted for 6 s; finally, there was a pause of unfixed length (up to 
several seconds). Three EEG channels were recorded (C3, C4, 
Cz, according to the international 10–20 system) along with 
ECG, R–R intervals were calculated as a difference between 
QRS complexes, which show heart rate, filtered at 5–10 Hz 
frequencies. The obtained data allowed for a few interesting 
conclusions. First, active visualization of limb movements 
induced heart rate change. Second, ECG classification 
accuracy was very high in almost all subjects: in many subjects 
the use of ECG modality was more effective than EEG.  Third, 
the hybrid approach increased classification accuracy in almost 
all subjects, especially in those, whose results in a single 
modality mode were low.

Thus, a hybrid approach to the implementation of systems 
for external device control is very promising. Considering how 
fast these technologies are developing, we believe that such 
high-accuracy neurodevices will appear in the market in the 
nearest future. The laboratory of Neurobiology and Medical 
Physics of the Institute of Chemistry and Biology of Immanuel 
Kant Baltic Federal University is working on a multifunctional 
neurodevice capable of detecting different electrophysiological 
signals simultaneously (EEG, EMG, EOG supported by the use 
of photoplethysmogram, SpO2 and temperature modules), 
ensuring a biological feedback and transmitting the processed 
data to exoskeletons and robotic devices in real time. This 
article presents the results of the first tests of the prototype 
model of such a neurodevice and assesses the possibility of 
fused EEG and EMG signal recording based on it.

METHODS

We have implemented a prototype model of electrophysiological 
and biometrical recorder capable of converting biosignals into 
commands for an electromechanical device; we have also 
tested our model in a two-stage experiment. At the first stage, 
the neurodevice was used to study the motor activity of the 
subjects by recording electrophysiological signals. For the 
unbiased assessment of the device performance, the resulting 
data were compared to the data obtained with analytical devices 
that had proved to be reliable and are now successfully applied 
in medical practice. At that stage, 2 healthy men participated 
in the experiment, (22 and 23 years of age, height of 175 and 
177 cm, respectively, weight of 70 and 75 kg). At the second 
stage, a possibility of fused EEG and EMG recording using the 
neurodevice was assessed. The experiment enrolled 10 healthy 

right-handed men aged 22–29 years (mean age was 25 years).
Brain electrical activity was measured by encephalogram 

via scalp leads; bioelectrical potentials in skeletal muscles were 
measured by electromyography; bioelectrical potentials related 
to eye ball movements were measured by oculography; body 
temperature was measured by thermometry; pulse rate was 
measured using photoplethysmography. The obtained data 
were recorded digitally and graphically.

For EEG recording, silver cup electrodes (Ag/AgCl) were 
used; EEG caps were used to place the electrodes on subjects’ 
heads. For EMG and EOG recording, silver plate electrodes 
were used. In the experiments aimed at the assessment of 
physiological signal parameters, the most common artifacts 
were detected, such as artifacts resulting from bad electrode 
attachment or electrical noise caused by subject’s movements, 
artifacts caused by upper body muscle tension and forehead 
wrinkling, muscle potentials, skin potentials, eye blinking, pulse 
waves.

To study motor activity, the subjects were asked to do 
physical exercises, including bending and turning the head to 
the right and left, tilting it down and back, with the prototype 
model of the neurodevice attached to it. Before the experiment, 
we had written a program for real-time visual representation of 
Euler angles rotation. 

Results of EEG, EMG and EOG signal recording and pulse 
rate data were compared to those obtained with KARDi3 device 
(Medical Computer Systems, Russia), intended for recording 
and analyzing ECG, EOG, EEG and some other parameters. 
Measurements were first done with KARDi3, then with the 
neurodevice of interest. The subject remained in the same 
position throughout the experiment. The electrodes attached 
to the body were not moved when switching from KARDi3 to 
the neurodevice prototype model. To reduce the amount of 
artifacts, electrode cables were bundled and twisted.

During EEG recording, we focused on alpha-rhythm, 
which is normally the most stable electrophysiological signal.  
To record the alpha rhythm, a bipolar lead system was used. 
Electrodes were attached to the back of the subject’s neck, 
reference electrodes were attached to ear lobes. To achieve the 
maximal relaxation of neck and head muscles and to reduce 
myographic artifacts, the subject was seated in the reclined 
position. In total, 100 trials were conducted. For both the 
neurodevice prototype model and KARDi3, the same recording 
mode was used, with a 30 Hz low-pass filter, a 0.5 Hz high-
pass filter, a 50 Hz band-reject filter, speed of 30 mm/s (X-axis), 
sensitivity of 50 mcV/mm (Y-axis).

EOG signals were recorded during the eye movement task. 
The total number of trials was 100. The subjects were asked to 
do the following exercises: look at the yellow dot in the center 
of the board – then up (red circle) – center (yellow dot) – down 
(blue circle) – center (yellow dot) – left (red cross) – center (yellow 
dot) – right (blue cross) – center (yellow dot). The subject was 
seated in front of the board with graphic symbols. To register 
the signal, a bipolar montage scheme was used. Electrodes 
were attached to the temples, close to the right eye and on 
the forehead. For both the neurodevice prototype model and 
KARDi3, the same recording mode was used, with a 40 Hz 
low-pass filter, a 1 Hz high-pass filter, a 50 Hz band-reject filter, 
speed of 15 mm/s (X-axis), sensitivity of 50 mcV/mm (Y-axis).

 To record EMG signals during thigh muscles contraction, 
the subject was asked to move the right leg forward for a step-
like movement. There were 100 trials in total. The left leg did 
not move, the subject did not lean on the right leg on which 
electrodes were placed. The subject was standing, using 
his left leg and right arm as points of support; his right leg 
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Fig. 1. Euler angles rotation during head exercises. (А) Head is bent to the left. (B) 
Head is back to the initial position (the yaw and roll angles change, the pitch angle 
remains unchanged, gyroscope returns to the initial position)

with electrodes on it was relaxed. Electrodes were placed 5 
cm apart from each other.  To record the signal, a referential 
montage scheme was used. Electrodes were placed over the 
femoral muscle using adhesive rings. For both the neurodevice 
prototype model and KARDi3, the same recording mode was 
used, with a 100 Hz low-pass filter, a 1 Hz high-pass filter, a 
50 Hz band-reject filter, speed of 120 mm/s (X-axis), sensitivity 
of 10 mcV/mm (Y-axis).

To record EEG, EMG and EOG signals using our 
neurodevice prototype, neurodevice, we have developed 
original software. To record EEG, EMG and EOG by KARDi3, 
Neurocortex software by Neurobotics, Russia was used. 

To measure the pulse rate the subject was seated. For 
ECG recording (100 trials in total), KARDi3 electrodes were 
attached to the wrists by adhesive rings. A referential montage 
scheme was used. Then, the subject put his finger on the 
photoplethysmogram module of the neurodevice, the output 
being the pulse-related signal. Pulse measurement was 
supported by pulse oximetry (SpO2). The following recording 
mode was chosen for both the neurodevice and KARDi3: 
a 0.1 Hz low-pass filter, a 50 Hz high-pass filter, a 50 Hz 
band-reject filter, speed of 60 mm/s (X-axis), sensitivity of 20 
mcV/mm (Y-axis). To process data obtained with KARDi3, 
Neocortex software was used; to process data obtained with 
the neurodevice, Heart Rate Monitor Demo software was used 
(Silicon Labs, USA).

To compare temperature measurement accuracy, Fluke 17b 
multimeter with a plug-in thermistor was used. The temperature 
sensor was attached to the subject’s forehead by the adhesive 
ring. The total number of trials was 136. Temperature data were 
transmitted to the PC via Blootooth protocol every second.

At the second stage of the experiment, a possibility of EEG 
and EMG fused recording by the neurodevice of interest was 
studied to ensure its good performance in a complex with 
robotic devices, such as an exoskeleton.

 The subjects were instructed to imagine their left leg 
movements and then to flex and extend the thigh (10 sessions 
for every participant). Classification accuracy was first assessed 
for EMG signals only and then for a hybrid EMG-EEG system. 

Physiological parameters were continuously monitored 
during motor tasks and idle periods (5 s long). Fisher linear 
discriminant analysis was used for classification.

STUDY RESULTS 

We studied motor activity involved in performing such tasks 
as turning and bending the head to the right or left, tilting it 
down and back. The results demonstrate high accuracy and 
precision of the data obtained with the motor sensor of the 
studied neurodevice. The diagram in fig. 1 shows Euler angles 
rotation (X-axis represents time, Y-axis represents angle): 1) 
pitch is rotation around the transverse axis (green line); 2) roll is 
rotation around the longitudinal axis (blue line); 3) yaw is rotation 
around the vertical axis (red line).

EEG data obtained with the studied neurodevice showed 
the same artifacts as EEG data obtained with KARDi3, and 
their amounts were comparable. It indicates that the studied 
neurodevice could compete with similar tools for EEG recording. 
Muscular activity artifacts were associated with small neck and 
head movements resulting from subject’s fatigue. Quite a few 
encephalograms showed traces of cardiogram artifacts, which 
is possibly related to the individual specifics of the subject’s 
cardiovascular system and the placement of electrodes over 
subcutaneous blood arteries.

EOG data obtained with the neurodevice were comparable 
to the data obtained with KARDi3 in their informative value; in 
case of our neurodevice, the amount of artifacts was lower. The 
most common artifact was eye blinking, which appeared on 
EOG as a sharp amplitude increase; artifacts of mimic muscles 
that accompanied the subject’s growing fatigue were also 
present.

During EMG signal quality assessment, it was found that 
the data obtained with our neurodevuce were as informative 
as the data obtained with KARDi3. No artifacts were detected.  

The results of temperature measurements obtained with 
the neurodevice were comparable to the data from Fluke 17b 
reference device. In average, temperature variance was 0.3%.

Pulse signal was obtained from the electrocardiogram 
recorded with KARDi3 and the neurodevice 
photoplethysmogram module. ECG R–R interval data from 
KARDi3 showed the same pulse values as data from the 
photoplethysmogram module. The mean HR in the first subject 
was 78 and 77 beats per minute (measured with KARDi3 and 
the neurodevice, respectively). The mean HR in the second 
subject was 72 and 71 beats per minute (measured with 
KARDi3 and the neurodevice, respectively). No artifacts that 
could affect the result were observed (fig. 2).

It is worth mentioning that the module for the assessment 
of cardiovascular system performance estimates blood oxygen 
saturation, thus providing some valuable data that can be used 
for exoskeleton control.

Our study of EEG and MG signal hybridization yielded 
results that support the idea electrophysiological signal fusion 
approach. The experiment showed that mean classification 
accuracy of EMG signals was 74.3 %. EMG-EEG hybridization 
led to the increased classification accuracy by an average of 
12.5 % with a mean of 86.8 % (75–97 %) in all subjects. The 
results are presented in the table below. 

DISCUSSION

It is obvious that development of a high-accuracy multifunctional 
neurodevice that allows for continuous recording of 
physiological signals and transmits data to the external device 
(exoskeleton) can yield very inspiring results. We have carried 
out a truly multidisciplinary study, at the first stage of which a 
prototype model of such a neurodevice was created and tested. 
It was demonstrated that the signals obtained with our device 
were identical to those obtained with reliable analytical tools. 

During some motor activity measurement procedures, 
gyroscope drift was observed associated with a changing 
magnetic field generated by the accumulator battery. It was 
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Fig. 2. Studying heart activity. (А) Electrode placement and ECG data obtained 
with KARDi3. (B) Electrode placement for photoplethysmogram and SpO2 
analysis using the prototype model of the neurodevice

Subject EMG EMG + EEG Dynamics

1 84.0 93.0 + 9.0

2 72.0 84.0 + 12.0

3 77.0 88.0 + 11.0

4 92.0 97.0 + 5.0

5 70.0 93.0 + 23.0

6 63.0 79.0 + 16.0

7 69.0 81.0 + 12.0

8 75.0 90.0 + 15.0

9 61.0 75.0 + 14.0

10 80.0 88.0 + 8.0

Mean 74.3 86.8 + 15.0

EMG and EEG signal classification accuracy in single modality and hybrid approaches,  %

the result of the relatively weak attachment of the accumulator 
to the model; rigid fixation of the accumulator helped to solve 
the issue. With weak attachment of the model to the subject’s 
body, a simultaneous change of two angles was observed 
occasionally when the subject was performing a task. It can be 
explained by the “multilayered” scheme used in the experiment: 
gyroscope components were placed on the motor module, and 
the motor module was placed on the subject’s head. Steady 
movements of the subject’s head also made their contribution. 
We will consider it in the fabrication of the experimental sample 
and will use software and hardware automatic calibration of 
the device position with respect to the subject’s position The 
main motor activity parameters measured by the experimental 
sample that we plan to fabricate will be linear acceleration of 
the accelerometer, angular acceleration of the gyroscope and 
a magnetic field vector of a magnetometer. EMG and EOG 
muscular artifacts will be removed using additional band-

reject filters or special software. Cardiogram artifacts can 
be removed by changing electrode attachment mode from 
stationary to dynamic, with a possibility to shift electrodes by 
no less than 10 mm. Thus, the electrode can be moved if it has 
been placed over an artery. Besides, improving accessories for 
electrode attachment will also reduce the amount of artifacts. 

The results of EEG-EMG fusion experiment showed the 
considerable advantage of hybrid BCIs over single-modality 
BCIs and confirmed the feasibility of simultaneous recording 
of various physiological signals [19–21, 23, 29]. Due to the 
increased classification accuracy and flexibility, a hybrid system 
is more reliable and exhibits higher performance. The obtained 
results lead us to conclude that fused EEG-EMG recording 
improves the interpretation of intended and actual physical 
activity. EEG signals unrelated to muscular activity are an 
additional identification tool that can be used in robotics. We 
speculate that improvements to the system and simultaneous 
use of various physiological signals will result in almost 100 % 
classification accuracy. 

By now, very few works describing such experiments have 
been published. All of them are non-representative with respect 
to the number of participants. To increase signal classification 
accuracy and safety of robotic devices, further research is 
necessary. Still, certain difficulties remain. First, electrode 
shifting is a problem, because the correct placement of 
electrodes is what defines intensity, quality and reproducibility 
of signals. With respect to that, non-contact technologies can 
be a solution. Second, complex movements involving several 
muscles (hand, forearm, shoulder girdle and trunk muscles) are 
generated by a large number of motor cortex areas, and the 
size of each area is unique for every person, which impedes 
reconstruction of complex movements. To solve this problem, 
new technologies capable of isolating target movements 
from unrelated ones are necessary. Some solutions have 
been proposed so far, including invasive interfaces  based on 
electrocorticography [30, 31].

CONCLUSIONS

The tests of the neurodevice prototype capable of simultaneous 
detection of different electrophysiological signals confirmed the 
feasibility of hybrid approach to the development of systems for 
external device control. Fusion of several modalities or switching 
from one to another to select the one that best interprets 
human intention increases signal classification accuracy and 
can possibly improve robotic device performance. Further 
research is necessary with a larger number of participants 
involved, including those with different pathologies. 
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