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Улучшение работы интерфейса глаз–мозг–компьютер при 
использовании частотных компонентов  электроэнцефалограммы

Improving eye-brain-computer interface performance by using 
electroencephalogram frequency components

Eye-brain-computer interfaces (EBCIs) could combine the advantages of eye tracking systems used for operating technical 
devices and brain-computer interfaces. Such systems are intended for both patients with various motor impairments and healthy 
individuals. The effectiveness of EBCIs is largely dependent on their ability to detect the user’s intent to give a command on 
the encephalogram (EEG) recorded during gaze fixation, that is, just within hundreds of milliseconds. These strict requirements 
necessitate a full use of data contained in EEG for more accurate classification of gaze fixations as spontaneous and “control”. 
This work describes our attempt to use for classification not only amplitude statistical features, but also wavelet features 
specific to oscillatory EEG components within the interval of 50-500 ms from gaze fixation onset.  Integral index of classification 
accuracy AUC significantly depended on the feature set, reaching the highest value (0.75, average over the group of 8 
participants) for the combined amplitude and wavelet set. We believe that further improvement of this method will facilitate the 
practical application of EBCIs. 

Интерфейсы глаз–мозг–компьютер (ИГМК) могли бы совместить в себе достоинства айтрекинговых систем управле-
ния техническими устройствами и интерфейсов мозг–компьютер. Такие системы предназначены как для пациентов 
с различными моторными нарушениями, так и здоровых людей. Эффективность ИГМК во многом определяется воз-
можностью распознать намерение пользователя отдать команду по электроэнцефалограмме (ЭЭГ), регистрируемой 
во время фиксации взгляда, т. е. в течение всего сотен миллисекунд. Эти жесткие требования диктуют необходи-
мость добиваться как можно более полного использования заключенной в ЭЭГ информации для повышения точнос-
ти классификации фиксаций взгляда на «управляющие» и спонтанные. В настоящей работе предприняли попытку 
использовать для классификации  не только амплитудные статистические признаки, но также вейвлетные признаки, 
характеризующие осцилляторные компоненты ЭЭГ в интервале 50…500 мс относительно начала фиксации взгля-
да. Значения интегрального показателя точности классификации AUC при этом значимо выросли и составили 0,75 
в среднем по группе из 8 человек. Предполагается, что дальнейшее совершенствование методики позволит превра-
тить ИГМК в практически полезную технологию.
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Brain-computer interfaces (BCIs) are systems for operating 
computers and other devices connected to them that make 
use of the detection of brain activity patterns associated with 
control commands. They have been designed primarily to 
assist paralyzed patients [1–3]. At the same time, the accuracy 
and operating speed of a vast majority of BCIs are still low. 
It is unclear if BCIs can be used outside the range of tasks 
where it is sufficient to issue very simple commands but 
important that these commands be given “straight from the 
brain” (for example, in poststroke rehabilitation [4]). Using BCI, 
a satisfactory spelling rate (50 characters per minute in healthy 
individuals) was achieved only in the recent study [5], in which 
rhythmic visual stimulation was used; it is still unclear if the use 
of such stimulation in BCI is safe. 

Interestingly, all non-invasive BCIs with high accuracy and 
high speed rates utilize EEG response to visual stimuli the user 
directs his or her gaze at. It means that they can be used only 
if a patient does not suffer from any serious vision impairment 
or eye movement disorders and still has the ability to voluntarily 
direct his gaze towards specific screen areas associated with 
control commands (to fixate the gaze on virtual “buttons”). 
When this is the case, however, it is possible to control 
computers and other devices connected to them by detecting 
gaze direction using eye tracking (video-oculography). 

Current methods of gaze-based control demonstrate 
relatively good accuracy, speed and usability when used for 
text entry [6]. However, attempts to apply them to a wider 
range of tasks are hampered by the so-called “Midas touch” 
problem [7]. Just like King Midas from the ancient Greek 
myth turned all things into gold by touching them, technical 
devices are non-selective in translating gaze fixations or eye 
movements into commands: their user issues commands 
even without an intent to issue them. This is because eye 
movements are a crucial component of visual function and are 
normally spontaneous, slipping conscious control easily even if 
attention is focused on them. Current solutions to this problem 
either make the control process very slow and tiring or can be 
used for a limited range of tasks.

As early as 1996, it was proposed to solve the Midas touch 
problem and create a high-performance universal interface by 
combining “eye-mouse” control with BCI [8]. Over a number of 
years the combination of those two technologies [9] was quite 
mechanical in nature and did not result in creating systems with 
fast response and good ergonomic properties. An innovative 
solution was suggested by Torsten Zander’s group who turned 
to the idea of natural combination of eye tracking and BCI [8] 
within the framework of a new trend, namely, the development 
of the so-called “passive BCIs”. This name was given to 
BCIs that responded to patterns of brain activity unrelated to 
deliberate efforts to issue a command using BCI [10]. Zander 
and his colleagues showed that eye fixations used for control 
(“control” fixations) can be differentiated from spontaneous 
(visual) fixations using the encephalogram (EEG) recorded 
during fixations, even if control markers appearing on EEG 
were not evoked intentionally (the subjects were not given 
additional tasks and were not presented with stimuli in the 
“control” position) [11]. However, in their study control could be 
implemented only by a long (1,000 ms) gaze fixation on a single 
screen target. 

Our group has developed a method for an eye-brain-
computer interface (EBCI) that allows for EEG–based 
classification of shorter fixations with a duration of 500 ms. In 
our experiment, subjects played Lines, a computer game, with 
their gaze only. Each move was made by fixating the gaze on 
one of 50 elements on the board. The classifier was trained 

to differentiate between the EEG signals recorded during 
those fixations and EEG signals recorded during fixations on 
the same elements but with control switched off, i.e., during 
supposedly spontaneous fixations [12; Shishkin et al., in prep.]. 
Due to the reduction of fixation length, subjects perceived 
control as natural and comfortable. The number and location of 
control-sensitive visual elements in our method was limited by 
eye tracker capacities only. However, fixation-related amplitude 
features of the EEG components (we used those features in 
our early works) did not provide sufficient control detection 
accuracy for practical application of the technology.

In this study we analyze the possibility to improve the 
accuracy of the EBCI classifier that automatically differentiates 
between control gaze fixations and spontaneous ones by using 
features of oscillatory EEG components in addition to EEG 
amplitude features. Since short EEG intervals should be used, 
during which both amplitude and frequency components can 
display time dependency, and because of the high dimensionality 
of time-frequency data and other significant differences 
between them and amplitude data, it was necessary to develop 
a special scheme for extracting quantitative parameters of EEG 
components recorded during gaze fixations.

METHODS

The experiment

We used EEG recordings obtained in our early experimental 
study. Its results will be presented in another article [Shishkin et 
al., in prep.]; the article will also provide a detailed description 
of the methods used in the experiment.

Our study was conducted in compliance with the guidelines 
of the Declaration of Helsinki. The study enrolled 8 relatively 
healthy individuals (7 male and 1 female) aged 21-48 (mean 
age was 29). The subjects gave their informed consent. 
Gaze was recorded using EyeLink 1000 Plus eyetracker (SR 
Research, Canada). Fixations were detected on-line using 
variance criterion. Sinchronously, EEG from 19 electrodes (Fz, 
F3, F4, Cz, C3, C4, Pz, P1, P2, P3, P4, POz, PO3, PO4, PO7, 
PO8, Oz, O1, O2) and electrooculogram (EOG) were recorded 
using the actiCHamp system (BrainProducts, Germany). EOG 
was used to monitor EEG artifacts. Gaze direction, EEG and 
EOG were recorded at 500 Hz frequency.

Gaze-based control algorithms and the task the subjects 
performed were exactly the same as described in our 
preliminary study [12]. Here, only the most important details 
are listed. The subjects played Lines, a computer game that 
was modified so that all moves during the game could be 
performed by a sequence of 3 fixations, each exceeding a 
500 ms duration threshold. Each sequence started with the 
fixation on a particular screen area, where a special “control 
on” indicator appeared after the threshold had been reached. 
EEG recorded during those fixations constituted the first class 
of data (control fixations). Another data class (non-control 
fixations) was constituted by EEG recorded during fixations 
that also exceeded the threshold but did not result in a move, 
according to game rules. Fixation-based game control, EEG/
EOG synchronization and recording of gaze fixation data were 
performed using the original software. 

An average of 155 (from 120 to 184) control and 159 
(from 114 to 208) non-control fixations was recorded for each 
subject.
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Feature extraction
 
To extract EEG wavelet features, we chose the interval 50–
500 ms after fixation onset, because the preceding interval 
contained artifacts related to gaze shifts, and the subsequent 
interval could not be used for detecting the intention to issue 
a command in the on-line mode. In the analyzed interval there 
were almost no artifacts, so we did not apply any procedures 
for their correction or removal. In our early work we showed 
[12; Shishkin et al., in prep.] that  in our EBCI paradigm, a 
considerable difference in EEG amplitudes between control and 
non-control fixations was typical for the second half of fixation 
interval only. Therefore, we used the interval 200–500 ms after 
fixation onset to obtain amplitude features in the current study.

Amplitude features were obtained by averaging amplitude 
values in each EEG channel separately in overlapping 50 ms 
windows. To reduce the influence of slow oscillations and direct 
current component, the baseline was corrected by subtracting 
the mean value for the interval 200–300 ms after fixation onset 
from those averaged values. The obtained “raw” amplitude 
features constituted a feature vector that characterized a trial 
corresponding to one fixation. 

Wavelet features were obtained using Morlet wavelet 
transform. The scale range corresponded to the frequency 
range of 5–30 Hz. The higher frequency corresponded to the 
scale, the more wavelet coefficients were used to describe 
the trial. To reduce noise produced by irrelevant features, only 
30 % of the wavelet time-frequency features were used, namely 
those that differed most considerably between spontaneous 
and control fixations (those that had the highest coefficient of 
determination, R2).

Selected features were processed using Principal 
Component Analysis (PCA). It was applied separately to 
amplitude features and wavelet features. 80 components with 
highest variance for each feature type were selected. They 
constituted new sets of features. Before and after PCA, z-score 
normalization was applied either to all values of each feature 
(in all trials) or to all features within a single trial (for amplitude 
features and wavelet features separately). Normalization within 
a single trial was considered a way of adaptation to local feature 
level that could gradually vary over time. 

EEG-based classification of control and non-control 
fixations 

For classification, linear discriminant analysis with shrinkage 
regularization was used. It ensured effective training with small 
training sets (like the one that was available in this study) even 
if feature dimensionality was relatively high; it also proved to be 
highly effective in the BCIs based on event-related potentials 
[13, 14]. 

Classification quality was assessed using 5-fold cross-
validation. Classifier training, feature selection, calculation of 
mean values and standard deviations for feature normalization 
(in case it was applied trialwise), as well as dimensionality 
reduction, were carried out on the data used as the training 
set. The derived feature selection rule, mean and standard 
deviations for corresponding value sets, weight matrix for 
selected components, and weight of the trained classifier 
were applied to the rest of data regarded as a test sample. 
Due to such arrangement of cross-validation, it was possible 
to reconstruct a real situation of how a classifier can be used 
online in a BCI.

As a classification quality metric, we used AUC (Area 

Under Curve; here, “Curve” refers to the Receiver Operating 
Characteristic (ROC) curve), an integral performance index 
widely applied in similar studies. It shows to what extent 
classification results differ from random for various classifier 
threshold values that can be selected to separate classes 
with various ratios of various types of errors, depending on 
the specific purpose the classifier is used for. If classification 
results do not differ from random guess, AUC value goes to 
0.5; if the classifier does not make any errors, AUC equals 
to 1. To compare AUC values in case of various feature sets, 
multivariate analysis of variance (MANOVA) and Bonferroni post 
hoc test were applied using Statistica 7.0 software (StatSoft, 
USA).

RESULTS

With all methods of feature extraction, individual values of 
classification accuracy (AUC)  were above 0.5, group mean 
was no less than 0.66; however, AUC mean values were 
considerably different (fig. 1).    

3-way MANOVA (see table below; all three factors were 
with repeated measures) applied to individual AUC values 
showed that classification accuracy was dependent on the 
feature set factor (λ = 0.06, F(2.6) = 49, p = 0.0002), while the 
effects of other factors and interaction between factors in all 
their combinations were not statistically significant. Benferroni 
post hoc test showed that the difference between amplitude 
and amplitude-wavelet feature sets was statistically significant 
(p = 0.006); no statistically significant difference between 
amplitude and wavelet (p = 0.34) and between wavelet and 
amplitude-wavelet (p = 0.16) feature sets was found. The 
set that consisted of amplitude features only had the lowest 
classification accuracy. The best results were shown by 
the combined set (amplitude and wavelet features grouped 
together). With the combined EEG feature set, AUC group 
mean increased by 0.05–0.08 (depending on the method used 
for normalization) compared to the amplitude set. AUC group 
mean was 0.75 ± 0.04 (M ± SD) with features normalized both 
before and after PCA, and 0.75 ± 0.06 with features normalized 
before PCA and within trials after PCA.

Fig. 2 shows individual results for the feature extraction 

Fig. 1. Dependence of classification accuracy (AUC) for gaze fixations (control 
and non-control) on the method used for feature extraction from EEG recorded 
during gaze fixation

Legend: А — amplitude features only, В — wavelet features only, АВ — combined 
(amplitude-wavelet) set of features; Z1 — normalization type before PCA; 
Z2 — normalization type after PCA; features: normalization of separate features; 
trials — normalization of features within a single trial. Vertical lines represent 
95 % confidence intervals.
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Factors Wilks’ λ F
df

(Effect, Error)
p

Z1 (normalization before PCA) 0.71 2.85 1, 7 0.1354

Z2 (normalization after PCA) 0.67 3.43 1, 7 0.1064

Feature set  (А, В, АВ) 0.06 49.01 2, 6 0.0002

Z1 × Z2 0.86 1.18 1, 7 0.3139

Z1 × features 0.48 3.26 2, 6 0.1101

Z2 × features 0.68 1.41 2, 6 0.3138

Z1 × Z2 × features 0.79 0.81 2, 6 0.4881

Effect of feature extraction methods on classification accuracy (AUC)

Note.  Using multivariate analysis of variance (MANOVA), AUC dependence on normalization before PCA (Z1), normalization after PCA (Z2), feature set type (amplitude, 
wavelet, amplitude-wavelet) and their interaction (represented by ×) were analyzed. Statistically significant effect is shown in bold (p <0.05).

method that resulted in the highest group averaged AUC. 
Individual curves on the graph provide values of various types 
of errors that could be observed with various classification 
threshold values. Specifically, of particular importance is EBCI 
classifier sensitivity, i.e., the rate of correctly identified control 
fixations, under the condition of low false positive rate. As 
shown in fig. 2, when fixating false positive rate at 0.1 (which 
can be achieved by selecting the corresponding classifier 
threshold using a separate set); only one subject demonstrated 
sensitivity lower than 0.2, while another subject had sensitivity 
above 0.5 and the rest scores were in the interval between 
those two values. 

DISCUSSION

Improvement of classifier performance is the key factor in 
the development of an EBCI that could detect relatively short 
control gaze fixations using EEG intervals recorded during such 
fixations, as only single signal intervals with the duration of a 
few hundred milliseconds are available for analysis in such a 
BCI paradigm. 

Quality of classification with low level of false alarms should 
be discussed separately. In EBCI, it is easy to provide a safety 
net in case control fixation is not identified. If the interface does 
not respond when the threshold of 500 ms has been reached, 
the users can continue fixate their gaze, and the system will 
respond after the additional (for example, 1,000 ms) threshold 
has been reached, even without the response from the EEG 
classifier. We can make a supposition that with the EBCI that 
has this kind of safety net, the brain of the user interested 
in speeding up interface activation can learn to produce the 
EEG pattern that accompanies control fixations and ensures a 
considerably more frequent response of the classifier. However, 
for that a minimum entry-level control is necessary. As fig. 2 
demonstrates, the scheme for signal preprocessing and  
feature extraction developed by the authors of this work would 
help some subjects evoke a faster interface response in half of 
control fixations with relatively low false alarm rate (0.1) 

While we already can speculate on the nature of amplitude 
features that can be used for classification in our EBCI, 
assuming that they might be related to the presence of 
negative potential associated with feedback expectation in 
case of interface response [Shishkin et al., in prep.], the nature 
of wavelet features still requires further elucidation. It should be 
noted that patterns of EEG frequency components typical for 
various brain states are highly individual and their specifics can 
be only partially observed on the group level. However, they can 

be successfully classified if the classifier is trained on individual 
data, in particular in the BCI paradigm [15–18]. Still, high 
dimensionality of such data requires an especially elaborated 
approach to different stages of analysis, with a larger number of 
subjects involved in such studies whenever possible. We have 
just made our first steps in this direction, but similar results 
obtained with various methods of data normalization may 
indicate a relatively high robustness of the proposed scheme 
for data preprocessing and informative features extraction, and 
its good prospects for the EBCI development.
 

CONCLUSIONS

In this work we made the first attempt to use the spatiotemporal 
EEG representation, i.e. representation of EEG frequency 
components as a function of time from the fixation onset. The use 
of these features allowed us to achieve classification accuracy 
at least as good as classification accuracy based on amplitude 
features we used in previous works. Moreover, a combination 
of both feature sets led to classification accuracy improvement. 
We believe that further improvement of computation methods 
will allow us to closely approach a practical application of eye-
brain-computer interfaces that combine the main advantages 
of standard BCIs and control systems based on eye tracking.

Fig. 2. ROC curves (Receiver Operating Characteristic curves) for all subjects 
when using the amplitude-wavelet feature set, feature normalization before 
PCA, trial normalization after PCA (feature extraction method that allowed for 
the highest group averaged AUC value). Red line shows random classification, 
grey vertical line provides an example of strict requirements to the specificity of 
classifier (false positive rate = 0.1)
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