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Eye-brain-computer interfaces (EBCIs) could combine the advantages of eye tracking systems used for operating technical
devices and brain-computer interfaces. Such systems are intended for both patients with various motor impairments and healthy
individuals. The effectiveness of EBCls is largely dependent on their ability to detect the user’s intent to give a command on
the encephalogram (EEG) recorded during gaze fixation, that is, just within hundreds of milliseconds. These strict requirements
necessitate a full use of data contained in EEG for more accurate classification of gaze fixations as spontaneous and “control”.
This work describes our attempt to use for classification not only amplitude statistical features, but also wavelet features
specific to oscillatory EEG components within the interval of 50-500 ms from gaze fixation onset. Integral index of classification
accuracy AUC significantly depended on the feature set, reaching the highest value (0.75, average over the group of 8
participants) for the combined amplitude and wavelet set. We believe that further improvement of this method will facilitate the
practical application of EBCls.
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YAYYLLUEHUE PABOTbl UHTEP®ENCA FAA3-MO3r-KOMMbIOTEP MPU
MCNOAb30BAHUU YACTOTHbLIX KOMNMOHEHTOB 3AEKTPO3HLE®AAOIPAMMDI
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TOTOen HeMPOKOrHUTUBHbBIX TexHonoru, KypyatoBckuii komnnekc HBEMKC-TexHonorui,
HaupnoHanbHbIN nccnenoBaTensCkUn LeHTP «Kyp4aTtoBCKMM MHCTUTYT», MockBa

2 KypyaToBckuin komnnexkc HBUKC-texHonorui,
HaunoHaneHbIN nccnenoBatensCkUm LeHTP «Kyp4aTtoBCKUM MHCTUTYT», MocKBa

S DaKynsTET KNOEPHETVIKN 1 MHDOPMAaLIMOHHOW 6e30MacHOCTH,
HaupnoHanbHbIN nccnenoBatensCkUn aaepHbln yHuBepcenteT «MU DI », Mockea

VHTepdeiicbl rnaz-mosr—komnbtotep (UIMMIK) mornm 6b1 COBMECTUTL B cebe AOCTOMHCTBA aiTPEKMHIOBBIX CUCTEM YrpaBse-
HUS TEXHUHECKMUN YCTPONCTBaMU U MHTEPMENCOB MO3M—KOMMBLIOTER. Takne CUCTeMbl NpeaHasHayYeHbl Kak i naumeHToB
C PasNMyHbIMN MOTOPHBIMI HAPYLLEHUAMU, Tak 1 300P0BbIX togen. SddektneHoCcTb MK BoO MHOroM onpegensercs Bo3-
MO>XHOCTBIO pPacrnosHaTb HaMepeHe Nob3oBaTesst OTAaTb KOMaHy Mo anekTposHuedanorpamme (93I7), perncTprpyemoi
BO Bpemsi vkcauun B3rsaa, T. €. B TeYeHMe BCEro COTEH MUMIMCEKYHA,. DTN XeCTKMe TpeboBaHUS OVKTYOT Heobxoau-
MOCTb A06MBATHLCS Kak MOXHO 60s1ee NMOMHOMO 1CMONb30BaHWS 3akkoHeHHoM B 931 nHopmaumm Ans noBbILLEHVS TOYHOC-
TV Knaccuukaummn hrkcaumin B3rnsaaa Ha «yrnpasnstolye» U CnoHTaHHble. B HacTosLel paboTe npeanpuHsav norbITKy
MNCNONB30BaTb A4/19 Knaccuukaumm He TONMbKO aMmUTyaHble CTaTUCTUHECKNE NPUSHAKK, HO TakKe BEMBNETHbIE MPU3HAKM,
XapakTepusytoLLme OCUMINATOPHbIE KOMMOHEHTbI D3I B nHTepBase 50...500 MC OTHOCUTENBHO Havana ukcaumn B3rns-
[a. 3Ha4eHNs1 MHTerpasibHOro nokasaTenst TO4HOCTU knaccudmkaumm AUC npu SToM 3Ha4MMO BbIPOCAn 1 cocTasunm 0,75
B CpedHeM Mo rpynne 13 8 Yenosek. [pegnonaraetcs, YTo AanbHeree COBEPLLEHCTBOBAHVE METOAVKM NO3BONT NMpeBpa-
T1Tb MK B NpakTn4ecKki NONe3Hy0 TEXHONOMIO.
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Brain-computer interfaces (BCls) are systems for operating
computers and other devices connected to them that make
use of the detection of brain activity patterns associated with
control commands. They have been designed primarily to
assist paralyzed patients [1-3]. At the same time, the accuracy
and operating speed of a vast majority of BCls are still low.
It is unclear if BCls can be used outside the range of tasks
where it is sufficient to issue very simple commands but
important that these commands be given “straight from the
brain” (for example, in poststroke rehabilitation [4]). Using BCl,
a satisfactory spelling rate (50 characters per minute in healthy
individuals) was achieved only in the recent study [5], in which
rhythmic visual stimulation was used; it is still unclear if the use
of such stimulation in BCl is safe.

Interestingly, all non-invasive BCls with high accuracy and
high speed rates utilize EEG response to visual stimuli the user
directs his or her gaze at. It means that they can be used only
if a patient does not suffer from any serious vision impairment
or eye movement disorders and still has the ability to voluntarily
direct his gaze towards specific screen areas associated with
control commands (to fixate the gaze on virtual “buttons”).
When this is the case, however, it is possible to control
computers and other devices connected to them by detecting
gaze direction using eye tracking (video-oculography).

Current methods of gaze-based control demonstrate
relatively good accuracy, speed and usability when used for
text entry [6]. However, attempts to apply them to a wider
range of tasks are hampered by the so-called “Midas touch”
problem [7]. Just like King Midas from the ancient Greek
myth turned all things into gold by touching them, technical
devices are non-selective in translating gaze fixations or eye
movements into commands: their user issues commands
even without an intent to issue them. This is because eye
movements are a crucial component of visual function and are
normally spontaneous, slipping conscious control easily even if
attention is focused on them. Current solutions to this problem
either make the control process very slow and tiring or can be
used for a limited range of tasks.

As early as 1996, it was proposed to solve the Midas touch
problem and create a high-performance universal interface by
combining “eye-mouse” control with BCI [8]. Over a number of
years the combination of those two technologies [9] was quite
mechanical in nature and did not result in creating systems with
fast response and good ergonomic properties. An innovative
solution was suggested by Torsten Zander’s group who turned
to the idea of natural combination of eye tracking and BCI [8]
within the framework of a new trend, namely, the development
of the so-called “passive BCls”. This name was given to
BCls that responded to patterns of brain activity unrelated to
deliberate efforts to issue a command using BCI [10]. Zander
and his colleagues showed that eye fixations used for control
(“control” fixations) can be differentiated from spontaneous
(visual) fixations using the encephalogram (EEG) recorded
during fixations, even if control markers appearing on EEG
were not evoked intentionally (the subjects were not given
additional tasks and were not presented with stimuli in the
“control” position) [11]. However, in their study control could be
implemented only by a long (1,000 ms) gaze fixation on a single
screen target.

Our group has developed a method for an eye-brain-
computer interface (EBCI) that allows for EEG-based
classification of shorter fixations with a duration of 500 ms. In
our experiment, subjects played Lines, a computer game, with
their gaze only. Each move was made by fixating the gaze on
one of 50 elements on the board. The classifier was trained
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to differentiate between the EEG signals recorded during
those fixations and EEG signals recorded during fixations on
the same elements but with control switched off, i.e., during
supposedly spontaneous fixations [12; Shishkin et al., in prep.].
Due to the reduction of fixation length, subjects perceived
control as natural and comfortable. The number and location of
control-sensitive visual elements in our method was limited by
eye tracker capacities only. However, fixation-related amplitude
features of the EEG components (we used those features in
our early works) did not provide sufficient control detection
accuracy for practical application of the technology.

In this study we analyze the possibility to improve the
accuracy of the EBCI classifier that automatically differentiates
between control gaze fixations and spontaneous ones by using
features of oscillatory EEG components in addition to EEG
amplitude features. Since short EEG intervals should be used,
during which both amplitude and frequency components can
display time dependency, and because of the high dimensionality
of time-frequency data and other significant differences
between them and amplitude data, it was necessary to develop
a special scheme for extracting quantitative parameters of EEG
components recorded during gaze fixations.

METHODS

The experiment

We used EEG recordings obtained in our early experimental
study. Its results will be presented in another article [Shishkin et
al., in prep.]; the article will also provide a detailed description
of the methods used in the experiment.

Our study was conducted in compliance with the guidelines
of the Declaration of Helsinki. The study enrolled 8 relatively
healthy individuals (7 male and 1 female) aged 21-48 (mean
age was 29). The subjects gave their informed consent.
Gaze was recorded using Eyelink 1000 Plus eyetracker (SR
Research, Canada). Fixations were detected on-line using
variance criterion. Sinchronously, EEG from 19 electrodes (Fz,
F3, F4, Cz, C3, C4, Pz, P1, P2, P8, P4, POz, PO3, PO4, PO7,
P08, Oz, O1, 02) and electrooculogram (EOG) were recorded
using the actiCHamp system (BrainProducts, Germany). EOG
was used to monitor EEG artifacts. Gaze direction, EEG and
EOG were recorded at 500 Hz frequency.

Gaze-based control algorithms and the task the subjects
performed were exactly the same as described in our
preliminary study [12]. Here, only the most important details
are listed. The subjects played Lines, a computer game that
was modified so that all moves during the game could be
performed by a sequence of 3 fixations, each exceeding a
500 ms duration threshold. Each sequence started with the
fixation on a particular screen area, where a special “control
on” indicator appeared after the threshold had been reached.
EEG recorded during those fixations constituted the first class
of data (control fixations). Another data class (non-control
fixations) was constituted by EEG recorded during fixations
that also exceeded the threshold but did not result in a move,
according to game rules. Fixation-based game control, EEG/
EOG synchronization and recording of gaze fixation data were
performed using the original software.

An average of 155 (from 120 to 184) control and 159
(from 114 to 208) non-control fixations was recorded for each
subject.



Feature extraction

To extract EEG wavelet features, we chose the interval 50—
500 ms after fixation onset, because the preceding interval
contained artifacts related to gaze shifts, and the subsequent
interval could not be used for detecting the intention to issue
a command in the on-line mode. In the analyzed interval there
were almost no artifacts, so we did not apply any procedures
for their correction or removal. In our early work we showed
[12; Shishkin et al., in prep.] that in our EBCI paradigm, a
considerable difference in EEG amplitudes between control and
non-control fixations was typical for the second half of fixation
interval only. Therefore, we used the interval 200-500 ms after
fixation onset to obtain amplitude features in the current study.

Amplitude features were obtained by averaging amplitude
values in each EEG channel separately in overlapping 50 ms
windows. To reduce the influence of slow oscillations and direct
current component, the baseline was corrected by subtracting
the mean value for the interval 200-300 ms after fixation onset
from those averaged values. The obtained “raw” amplitude
features constituted a feature vector that characterized a trial
corresponding to one fixation.

Wavelet features were obtained using Morlet wavelet
transform. The scale range corresponded to the frequency
range of 5-30 Hz. The higher frequency corresponded to the
scale, the more wavelet coefficients were used to describe
the trial. To reduce noise produced by irrelevant features, only
30 % of the wavelet time-frequency features were used, namely
those that differed most considerably between spontaneous
and control fixations (those that had the highest coefficient of
determination, R?).

Selected features were processed using Principal
Component Analysis (PCA). It was applied separately to
amplitude features and wavelet features. 80 components with
highest variance for each feature type were selected. They
constituted new sets of features. Before and after PCA, z-score
normalization was applied either to all values of each feature
(in all trials) or to all features within a single trial (for amplitude
features and wavelet features separately). Normalization within
a single trial was considered a way of adaptation to local feature
level that could gradually vary over time.

EEG-based classification of control and non-control
fixations

For classification, linear discriminant analysis with shrinkage
regularization was used. It ensured effective training with small
training sets (like the one that was available in this study) even
if feature dimensionality was relatively high; it also proved to be
highly effective in the BCls based on event-related potentials
[13, 14].

Classification quality was assessed using 5-fold cross-
validation. Classifier training, feature selection, calculation of
mean values and standard deviations for feature normalization
(in case it was applied trialwise), as well as dimensionality
reduction, were carried out on the data used as the training
set. The derived feature selection rule, mean and standard
deviations for corresponding value sets, weight matrix for
selected components, and weight of the trained classifier
were applied to the rest of data regarded as a test sample.
Due to such arrangement of cross-validation, it was possible
to reconstruct a real situation of how a classifier can be used
online in a BCI.

As a classification quality metric, we used AUC (Area
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Under Curve; here, “Curve” refers to the Receiver Operating
Characteristic (ROC) curve), an integral performance index
widely applied in similar studies. It shows to what extent
classification results differ from random for various classifier
threshold values that can be selected to separate classes
with various ratios of various types of errors, depending on
the specific purpose the classifier is used for. If classification
results do not differ from random guess, AUC value goes to
0.5; if the classifier does not make any errors, AUC equals
to 1. To compare AUC values in case of various feature sets,
multivariate analysis of variance (MANOVA) and Bonferroni post
hoc test were applied using Statistica 7.0 software (StatSoft,
USA).

RESULTS

With all methods of feature extraction, individual values of
classification accuracy (AUC) were above 0.5, group mean
was no less than 0.66; however, AUC mean values were
considerably different (fig. 1).

3-way MANOVA (see table below; all three factors were
with repeated measures) applied to individual AUC values
showed that classification accuracy was dependent on the
feature set factor (A = 0.06, F(2.6) = 49, p = 0.0002), while the
effects of other factors and interaction between factors in all
their combinations were not statistically significant. Benferroni
post hoc test showed that the difference between amplitude
and amplitude-wavelet feature sets was statistically significant
(p = 0.006); no statistically significant difference between
amplitude and wavelet (p = 0.34) and between wavelet and
amplitude-wavelet (p = 0.16) feature sets was found. The
set that consisted of amplitude features only had the lowest
classification accuracy. The best results were shown by
the combined set (amplitude and wavelet features grouped
together). With the combined EEG feature set, AUC group
mean increased by 0.05-0.08 (depending on the method used
for normalization) compared to the amplitude set. AUC group
mean was 0.75 + 0.04 (M + SD) with features normalized both
before and after PCA, and 0.75 + 0.06 with features normalized
before PCA and within trials after PCA.

Fig. 2 shows individual results for the feature extraction

Z2: Features Z2: Trials
0,80
0,75
o
=)
< 0,70
Z1
+ Features
0,65
#: Trials
A B AB A B AB

Fig. 1. Dependence of classification accuracy (AUC) for gaze fixations (control
and non-control) on the method used for feature extraction from EEG recorded
during gaze fixation

Legend: A — amplitude features only, B— wavelet features only, AB— combined
(amplitude-wavelet) set of features; Z1 — normalization type before PCA,;
Z2 — normalization type after PCA, features: normalization of separate features;
trials — normalization of features within a single trial. Vertical lines represent
95 % confidence intervals.
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Effect of feature extraction methods on classification accuracy (AUC)
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Factors Wilks’ A F (Effec(tj,fError) p
Z1 (normalization before PCA) 0.71 2.85 1,7 0.1354
Z2 (normalization after PCA) 0.67 3.43 1,7 0.1064
Feature set (A, B, AB) 0.06 49.01 2,6 0.0002
Z1 %72 0.86 1.18 1,7 0.3139
Z1 x features 0.48 3.26 2,6 0.1101
Z2 x features 0.68 1.41 2,6 0.3138
Z1 x Z2 x features 0.79 0.81 2,6 0.4881

Note. Using multivariate analysis of variance (MANOVA), AUC dependence on normalization before PCA (Z1), normalization after PCA (22), feature set type (amplitude,
wavelet, amplitude-wavelet) and their interaction (represented by x) were analyzed. Statistically significant effect is shown in bold (p <0.05).

method that resulted in the highest group averaged AUC.
Individual curves on the graph provide values of various types
of errors that could be observed with various classification
threshold values. Specifically, of particular importance is EBCI
classifier sensitivity, i.e., the rate of correctly identified control
fixations, under the condition of low false positive rate. As
shown in fig. 2, when fixating false positive rate at 0.1 (which
can be achieved by selecting the corresponding classifier
threshold using a separate set); only one subject demonstrated
sensitivity lower than 0.2, while another subject had sensitivity
above 0.5 and the rest scores were in the interval between
those two values.

DISCUSSION

Improvement of classifier performance is the key factor in
the development of an EBCI that could detect relatively short
control gaze fixations using EEG intervals recorded during such
fixations, as only single signal intervals with the duration of a
few hundred milliseconds are available for analysis in such a
BCI paradigm.

Quiality of classification with low level of false alarms should
be discussed separately. In EBCI, it is easy to provide a safety
net in case control fixation is not identified. If the interface does
not respond when the threshold of 500 ms has been reached,
the users can continue fixate their gaze, and the system will
respond after the additional (for example, 1,000 ms) threshold
has been reached, even without the response from the EEG
classifier. We can make a supposition that with the EBCI that
has this kind of safety net, the brain of the user interested
in speeding up interface activation can learn to produce the
EEG pattern that accompanies control fixations and ensures a
considerably more frequent response of the classifier. However,
for that a minimum entry-level control is necessary. As fig. 2
demonstrates, the scheme for signal preprocessing and
feature extraction developed by the authors of this work would
help some subjects evoke a faster interface response in half of
control fixations with relatively low false alarm rate (0.1)

While we already can speculate on the nature of amplitude
features that can be used for classification in our EBCI,
assuming that they might be related to the presence of
negative potential associated with feedback expectation in
case of interface response [Shishkin et al., in prep.], the nature
of wavelet features still requires further elucidation. It should be
noted that patterns of EEG frequency components typical for
various brain states are highly individual and their specifics can
be only partially observed on the group level. However, they can
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be successfully classified if the classifier is trained on individual
data, in particular in the BCl paradigm [15-18]. Still, high
dimensionality of such data requires an especially elaborated
approach to different stages of analysis, with a larger number of
subjects involved in such studies whenever possible. We have
just made our first steps in this direction, but similar results
obtained with various methods of data normalization may
indicate a relatively high robustness of the proposed scheme
for data preprocessing and informative features extraction, and
its good prospects for the EBCI development.

CONCLUSIONS

In this work we made the first attempt to use the spatiotemporal
EEG representation, i.e. representation of EEG frequency
components as afunction of time from the fixation onset. The use
of these features allowed us to achieve classification accuracy
at least as good as classification accuracy based on amplitude
features we used in previous works. Moreover, a combination
of both feature sets led to classification accuracy improvement.
We believe that further improvement of computation methods
will allow us to closely approach a practical application of eye-
brain-computer interfaces that combine the main advantages
of standard BCls and control systems based on eye tracking.
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Fig. 2. ROC curves (Receiver Operating Characteristic curves) for all subjects
when using the amplitude-wavelet feature set, feature normalization before
PCA, trial normalization after PCA (feature extraction method that allowed for
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