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BRAIN-COMPUTER INTERFACE: THE FUTURE IN THE PRESENT
Levitskaya OS'™, Lebedev MA?

" Cyber Myonics, Moscow, Russia

2 Department of Neurobiology,
Duke University, Durham, North Carolina, USA

Brain-computer interfaces (BCls) are a promising technology intended for the treatment of diseases and trauma of the nervous
system. BCls establish a direct connection between the brain areas that remain functional and assistive devices, such as
powered prostheses and orthoses for the arms and legs, motorized wheelchairs, artificial sensory organs and other technologies
for restoration of motor and sensory functions. BCls of various kinds are currently developing very rapidly, aided by the progress
in computer science, robotic applications, neurophysiological techniques for recording brain activity and mathematical methods
for decoding neural information. BCls are often classified as motor BCls (the ones that reproduce movements), sensory BCls
(the ones that evoke sensations), sensorimotor BCls (the ones that simultaneously handle motor and sensory functions), and
cognitive BCls intended to regulate the higher brain functions. All these BCI classes can be either invasive (i. e. penetrating the
body and/or the brain) or noninvasive (i.e. making no o little contact with the body surface). Noninvasive BCI are safe to use
and easy to implement, but they suffer from signal attenuation by scalp and skin, its contamination with noise and artifacts,
and an overall low information transfer rate. Invasive BCls are potentially more powerful because they utilize implanted grids
that can both record neural signals in high-resolution and apply stimulation to the nervous tissue locally to deliver information
back to the brain. BCI technologies are being developed not only for individual use, but also for collective tasks performed by
multiple interconnected brains.

Keywords: brain-computer interface, neuronal network, neuronal activity, neuronal decoding algorithm, neuronal plasticity of
brain, encephalogram, functional electrical stimulation, cochlear implant, visual prosthesis
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WHTEP®ENC MO3r-KOMNMbIOTEP: BYAYLLEE B HACTOSILLEM

O. C. NeBnukas™, M. A. Jlebenes?

OO0 Cyber Myonics, Mockea

2QTpen Herpobuonormuu,
YHumeepcuteT Obtoka, dapem, CesepHas KaponuHa, CLLIA

HTepdeiic mosr—komnbtotep (VIMK) — ofHa 13 caMbix MHOMOOOELLaroLLMX TEXHONOMIA B 06NacTy NeYeHnst HeBpoormyec-
Knx 3abonesaHuii 1 TpaeM. MIMK nosBonsieT yCTaHOBUTL CBA3b MEXXAY HEMOBPEXAEHHBIMY yHacTKamy Mo3ra 1 NMpoTe3amm
OTCYTCTBYHOLLIMX KOHEYHOCTEN, HOCUMBIMU HEMPOMPOTE3aMM, MHBANIMOHBIMM KPECaMM, NCKYCCTBEHHBIM OpraHaMu HyBCTB
N OPYrMK YCTPOMCTBaMM, KOMMNEHCUPYIOLLMK yTpadeHHble PyHkUmW. B HacTosee Bpems VIMK 6bIcTpo pasBuBatoTcH
6narogapst 6ypHOMY POCTY BbIYNCANTENBHBIX MOLLIHOCTEN, POBOTOTEXHNKIM, METOAOB 3arCy CUrHaSIOB MO3ra 1 MaTemMaTuye-
CKMX anropuTMOB ON151 UX AekoampoBaHvis. [NpuHaTo knaccupnumpoBaTts VIMK Ha MOTOPHbIE (BOCMPON3BOASALLME ABVKEHUS),
CEHCOPHbIE (HyBCTBUTENbHDBIE) 1 ABYHANPABEHHbIE (CEHCOPHOMOTOPHbIE). CyLLECTBYIOT Takke MHTeperChl, MHTEPNPEeTU-
pyloLIve NN BOSAENCTBYIOLLIME Ha BbiCLUNE HepBHble PyHKLMM. [0 CTeNneHV NPOHUKHOBEHUST B BUMONOrMYeCcKne TKaHn op-
raH“3Ma BbIAENAOT MHBa3MBHbIE (IyOOKO MPOHMKAIOLLME) 1 HEVMHBa3VBHbIE (B3aMMOAENCTBYIOLLIME NWLLb C MOBEPXHOCTHLIO
Tena, Ho He npoHvkatoLme) MMK. HemHBasaneHble VIMK 6e3onacHee 1 NpoLLe B UCMOMb30BaHWN, HO MMEIOT OrpaHnYeHst No
MPOMYCKHOW CNOCOBHOCTM curHana. VIHBaauBHble »e bnaroaapst HeNMOCPEACTBEHHOMY KOHTaKTY MySIETU3EKTPOAHbIX MaTPLL
C HEMPOHHbIMY aHcamonamu 6e3 3allyMAeHs 1 AOMOMHUTENBHBIX (PUABTPYIOLLMX 6apbepOoB MO3BOMSKOT CHMTLIBATL CUMHA-
bl B BbICOKOM Pa3peLLeHnn 1 NOKabHO CTUMYANMPOBATb HEPBHYIO TKaHb A/1S MepeaaYn curHanoB obpaTHON CBS3W B MOST.
Texnonorum VIMK pa3zpabatbiBatoTcs He TONbKO ANS MHAMBWOYaNbHOrO NOb30BaHNS, HO 1 Ast BbINOMHEHWUS KOMEKTUBHBIX
3afa4 Npw MOMOLLI MO3roceTel.

KntoueBble cnoBa: VHTEPdENC MO3r—KOMMBIOTER, HEMPOHHAsH CETb, HEMPOHa/TbHAasA aKTUBHOCTb, HENPOHaNbHOE OeKOAN-
pOBaHWe, HEMPONNACTUHHOCTb MO3ra, SM1EKTPOSHLIEdanorpamma, QyHKUMOHaNbHAsA 3NEKTPOCTUMYNALIMA, KOXIeapHbIn M-
nnaHTaT, 3pUTENbHbIN NPOTE3

Ons koppecnoHgeHummn: Onbra CepreesHa Jlesuukas
1283060, r. Mockga, yn. Mapuwana Buptososa, 4. 30, kB. 45; olia_levits@mail.ru

Cratbsi nonyyeHa: 11.03.2016 Ctatba npuHATa B nevartb: 25.03.2016

For example, we scan visual scenes with eye movements and
move our hands to obtain tactile sensations.

Ultimately, any mental activity is expressed as muscle
contractions and relaxations that allow us to interact with

the external world and each other: muscles control limb and
eye movements, facial expression, and speech production.
Muscle contractions are involved in practically any sensation.

The movements of our body are monitored by a large
number of sensory receptors. The continuous streams of
incoming (sensory) and outgoing (motor) signals are processed
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at multiple levels of the nervous system, from the lowest to
the highest. This immense sensory and motor processing is
largely subconscious, and we take it for granted that we can
effortlessly perform very complex tasks, such as walking upright,
maintaining balance, moving fingers and toes, speaking, etc.

Unfortunately, the ability to move and sense can be severely
impaired if the nervous system is damaged. Millions of people
around the world suffer from sensory and motor deficits caused
by spinal cord injuries, stroke, Parkinson’s disease, amyotrophic
lateral sclerosis and other pathological conditions. Even in the
cases of devastating deficits, very often higher brain regions
retain their functionality but turn to be isolated from muscles,
the result being the patient’s paralysis and inability to speak
or feel.

Currently, there is no effective treatment for many motor
and sensory disorders. Patients are bed - or wheelchair bound
till the end of their lives. Development of effective rehabilitation
methods and devices that compensate for the lost functions is
an extremely important issue faced by modern medicine.

Artificial components for nervous system

A brain-computer interface (BCI) is a promising tool for treating
various neurological disorders. BCls connect intact areas of the
brain to assistive devices that can restore motor and sensory
functions [1-5]. For example, patients paralyzed after a spinal
cord injury could potentially restore mobility using a BCI that
connects their intact motor cortex to robotic arms, exoskeletons
or devices that apply functional electrical stimulation (FES) to
the muscles. So far, there has been certain success in the
development of such motor BCls [6-9]. Moreover, patients can
hope to restore sensitivity of paralyzed body parts with sensory
BCls that connect somatosensory areas of the nervous system
to prostheses equipped with touch and position sensors.
Such BCls induce sensations by electrical stimulation of the
somatosensory cortex.

Being of assistance to patients, BCls can also be used by
healthy individuals, for example, in computer games [10] or as
an alarm clock for long-haul truck drivers [11]. In the latter case
the drowsiness is detected using the encephalogram (EEG).

BCls are often called brain-machine interfaces (BMls).
In general, these terms can be used interchangeably, but
conventionally, noninvasive interfaces have been termed
BCls and invasive interfaces have been termed BMils.
“Neuroprosthesis” and “neuroimplant” are their synonyms. In
this article the term BCl is used.

Brain-computer interfaces belong to that knowledge
area where the gap between science fiction and its practical
implementation does not exceed 50 years. However, despite
the fact that the number of publications on this subject has
increased over the past few years, many BCI technologies
are still at experimental stage, not used in clinical practice and
not available in retail. The exception to that are some FES-
based systems [12] and cochlear implants [13, 14] that are
successfully used for rehabilitation.

In this article we will cover motor and sensory BCls.
Classification of functions into sensory and motor is, however,
oversimplistic. The brain of any organism does not have areas
solely responsible for movements or sensations [15, 16]. That
is why recently developed sensorimotor interfaces are the most
ergonomic ones [17].

The history of research and BCI development

The initial experiments in monkeys date back to the mid-1960s.
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The monkeys were implanted with multi-electrode arrays for
electrical stimulation and recording of cortical potentials [15, 18].
[t was shown that the sensorimotor cortex was activated when
monkeys performed movements; the electrical stimulation of
the sensorimotor cortex, in turn, caused muscle contractions.

In 1963 Walter carried out an experiment in which the first
BCl as we understand it now was implemented [19]. To assist
clinical diagnosis, patients were implanted with electrodes in
different cortical areas. They were asked to advance carousel
projector slides by pressing a button. After discovering the
cortex area responsible for reproducing that muscle pattern,
the researcher connected it straight to the projector. The button
was disconnected, but the slides kept on moving: the brain
controlled slide advance and did it even before the subject
pushed the disconnected button.

An idea similar to the concept of modern BCls was
formulated by American researchers from the National
Institute of Health in the late 1960s. They announced that they
would focus on the development of principles and methods
of controlling external devices by brain signals [20]. The
researchers implanted electrodes to the motor cortex area
of monkeys. The electrodes recorded action potentials of a
few neurons while the animals were moving their hands [21].
The recorded neuronal discharges were transformed into the
trajectory of movement of a hand using linear regression. It took
another 10 years of effort to implement such transform in real
time: the monkeys had learned to control the cursor on a LED
display by activating their motor cortex neurons [22].

At that time a similar study was carried out under Fetz's
supervision [23], but the focus was on studying the biological
feedback; the scientists faced the question: could a monkey
control its neuronal discharges volitionally? It was found that
volitional control of neurons responsible for movement was
possible without performing the actual movement. That result is
important for understanding the mechanisms of mirror neurons
and even neurons involved in empathy.

Parallel to the development of motor BCls, sensory
interfaces were emerging [14]. In 1957 French scientists
Djourno and Eyries succeded in inducing auditory sensations
in deaf individuals using a single-channel electrode that
stimulated the auditory nerve. In 1964 Simmons proposed
a multi-channel upgrade for the device. In the 1970s House
and Urban developed the device that consisted of an acoustic
signal converter and a multi-channel cochlear implant. The
device was approved by the US Food and Drug Administration.
After further improvements, the device was introduced into
clinical practice.

In the 1980s a possibility of vision restoration using BCls
became the subject of the research. An electrode array was
implanted over the visual cortex of totally blind individuals.
Visual sensations induced during the experiment were termed
phosphenes. People who had never seen light (or had not seen
it for a long time) learned to identify simple phosphene patterns
[24, 25]. At present electrically stimulated vision continues to
be tested in clinical trials, where a complex image from a video
camera is transmitted to the stimulating implants located in the
eye or visual cortex.

A tremendous advance in BCI research took place in the
1990-2000s. Nicolelis and Chapin constructed the first BCI for
controlling a robotic device [26]. The recorded activity of the
cortex and basal ganglia neurons of awake rats was transmitted
to arobot that fetched water to animals. Then Nicolelis continued
his research with primates. Primates were used in a number of
research projects, such as a robotic arm controlled by cortical
neuronal ensembles [27-29], a BCI establishing an artificial



tactile feedback [17], a BCI for decoding leg movements [30],
BMI for bimanual movements [31], and others.

Also in the 1990s, experiments on implanting electrodes
into human brain were launched. Kennedy, who implanted
electrodes into his own brain in 2015, worked with a patient
with amyotrophic lateral sclerosis. The patient was implanted
with an electrode that contained myelinated fibers growth
factor in the tip. As a result, the patient was able to issue a
binary neural command [32].

In the early 2000s several laboratories began to compete
in the area of invasive BCI development. A group headed by
Donoghue worked with monkeys and humans; the researchers
implanted multi-electrode arrays into human motor cortex,
which allowed paralyzed individuals to control the cursor [8]
and robotic manipulators [9]. Schwartz et al. studied movement
control in three-dimensional space [33]. Eventually, success
was achieved in the experiments with people controlling
anthropomorphic robotic arm [7]; it is currently one of the most
impressive achievements of BCI technology.

In the process of BCI development, many laboratories
including those of Andersen, Shenoy and Vaadia, studied
various cortical areas as signal sources for BCIl and created
new and original algorithms of decoding brain signals.

Parallel to that, studies on noninvasive neurointerfaces were
carried out. They were based on EEG recording, near-infrared
brain imaging and FES. Birbaumer, Pfurtscheller, Walpaw,
Muller, Schalk, Neuper, Kubler, Millan, and other researchers
offered a number of practical solutions for wheelchair operation
and limb mobility restoration after traumas and strokes [12].

Neuronal decoding and neuronal tuning

How do motor BCls manage to decode motor parameters
from neuronal recordings? Many neurophysiological studies
have shown that discharge rates of single cortical neurons are
correlated to behaviors. For example, discharge rates of motor
cortical neurons are correlated to the position, acceleration and
the joint torques of the arm. Developers use such correlations for
decoding neuronal signals. Reproducibility and recognizability
of neural patterns, the so-called neuronal tuning, are a key
factor for successful decoding. Neurons can be badly tuned
or noise-contaminated, which impedes the decoding process.

Investigations of encoding of various parameters by single
neurons began in the 1950-1960s. Those studies utilized a
single sharp-tipped electrode to record the extracellular activity
of neurons in different brain areas. Somatosensory [34], motor
[16] and visual [35] systems were studied using this approach. It
became clear that even single neurons demonstrate repeatable
activity patterns that encode a number of sensory and motor
phenomena.

Extracellular recording from single neurons in awake
behaving animals continued in many laboratories around the
world. Wise et al. discovered that cortical neurons modulate
their rates several seconds before the actual movement. In their
experiments, the monkeys knew what movement they had to
make, but were trained not to make it before the trigger stimulus
[36]. To study the transformation of visual stimuli on movement
direction, Kalaska et al. recorded single neuron activity and
employed a task in which a movement had to be executed after
a delay [37]. Those experiments demonstrated that neuronal
discharges contain information about the movements that
are executed and those that are planned by the brain, but not
initiated.

Georgopoulos and his colleagues recorded activity patterns
of single motor cortical neurons while monkeys made arm

REVIEW | NEUROINTERFACES

movements in different directions [38]. The researchers found
the dependency between the signal intensity and movement
direction that could be described by a cosine function, meaning
that discharge frequency of neurons was maximal for a certain
direction, called preferred direction, and reduced gradually
when movements deviated from it. To explain how neuronal
discharges transform into arm movement in a given direction,
Georgopoulos suggested the concept of the population
vector. Such vector is a vector sum of contributions from
multiple neurons that has been shown to match the movement
direction. Interestingly, even imagery of arm movement without
its execution, such as imaginary 90° rotation in space, can be
well described by a population vector [39].

Owing to these studies, it became clear that the activity of
individual neurons carries information on behavior parameters
and these parameters can be decoded. Neurophysiologists
often use an audio speaker to monitor discharges of single
neurons. An experienced neurophysiologist can tell what
his monkey is doing by listening to the sound of discharges.
Similarly, a BCI decoder “listens” to neurons and tries to infer
what movement or intent underlies this “neuronal sound”. The
more neurons are “heard” by the decoder, the more accurate
is the decoding.

What do neuron ensembles sing about?

The more “musicians” a neuronal ensemble consists of,
the higher is the accuracy of decoding: increased neuronal
sample enables to exclude occasional noisy fluctuations of
single neurons [1, 2]. This does not mean that small neuronal
populations are useless for BCls. Sometimes a few neurons
are enough for the interface to work [33, 40], particularly if
those neurons are highly tuned to the parameter of interest.
Highly tuned neurons are sometimes called grandmother
cells or Jennifer Aniston neurons, because they are selectively
activated by specific stimuli: grandmother’s or Jennifer Aniston’s
photographs. [41]. If a BCl task is to identify the presence of a
grandmother or Jennifer Aniston, such neurons come handy.
However, they are quite rare, and in real life the brain processes
information using highly distributed neuronal representations.
The melody of single neurons gives the main idea of a behavior
pattern, but its symphony is played by many instruments.
The more neurons are recorded simultaneously, the more
accurate is the encoding [2]. Because of that, multielectrode
recording of neuronal activity from a large number of neurons
is most effective for BCl decoding. It is especially important to
record the signals of large neuronal ensembles if the task is
to decode several behavioral parameters simultaneously [30].
Such ensemble recording improves decoding and maintains
its stability [1].

Decoding algorithms

BCI decoders use statistical and machine-learning methods
to reconstruct behaviors from neuronal activity. Initial decoder
settings are based on a training set. In experiments with
monkeys a 5-10-minute recording is necessary to obtain the
training set. During this time interval, the animal performs the
task manually, for example, moves the joystick with its hand
[17, 28, 29], and the decoder “learns” to detect movement
parameters (position, acceleration, force). Then the mode is
changed to brain control, and the monkey performs the task
(moves the cursor and places it over the target) using the
decoder and not its own hands.
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A training set can be obtained without moving the
hand. Instead, a subject observes a cursor movement or —
in experiments with humans — we ask him to imagine the
movement. The latter approach is especially important if the
participant of the study is paralyzed.

The choice of a decoding algorithm is dictated by the
behavioral parameters that need to be extracted from neuronal
activity and neural signal features used for decoding (single
neuron activity, field potentials, etc.), the number of recording
channels, the specifics of the behavioral task (for example, a
continuous control of cursor position or, in contrast, making
discrete decisions).

If decoding is based on population vectors, a training
set often consists of movements from the center to different
directions along the radius. Then a population vector is
computed; it is a weighted vector sum of contributions from
single neurons. Each neuron contributes a vector pointing
in that neuron’s preferred direction, and the vector length is
proportional to the neuron’s discharge frequency [39]. Despite
some advantages, a clear conceptual framework being one of
them, this method is not optimal because it is not based on
statistical procedures that would optimize decoding accuracy.

Wiener filter is a linear decoder which is very similar to
the population vector, but it is much more accurate, since
it minimizes the mean square error. Wiener filter output for
time t is a weighted sum of neuron rates measured at different
time points in the past (usually, 5-10 time points within a
1-second time window preceding f) [42]. Weights are computed
for each neuron using standard linear regression methods
based on matrix algebra.

In many cases, for example, in the presence of stereotype
movement patterns, another filter — Kalman fiter —
demonstrates better performance. Kalman filter separates
variables into the sets of state variables (limb position or velocity)
and observable variables (relation of neuronal discharge to
movement direction). During the decoding process, the state
vector is updated for discrete time steps (usually 50-100
ms). During each update, two computations are performed:
prediction of the next state and its correction based on neuronal
activity data. Correction uses the model that compares an
expectation of neuronal rates and the actually observed rates.

Unscented Kalman filter improves estimation made with
a classic Kalman filter by taking into account non-linear
dependencies between neuronal activity and movements.

Interestingly, research on neuronal decoding facilitates
the development of new analytical mathematical methods of
physiological interaction between the neurons. For example,
artificial neural networks were both inspired by the organization
of a nervous system and can be used for the interpretation of
the activity of brain circuitry. Some laboratories use recurrent
neural networks for decoding [43].

When solving tasks that imply a number of discrete
solutions, discrete classifiers are used. EEG decoding of letters
and numbers based on cortical potentials is one example
[44, 45]. In BCI decoding, the following methods of machine
learning have also found their application: Gaussian classifier,
probabilistic classifier structures (Bayesian networks), hidden
Markov models, k-nearest neighbour algorithm, artificial neural
networks, multilayer perceptron, elements of fuzzy logic.

Theories of movement control and motor BCls
To explain neuronal mechanisms of movements, several

theories of movement control have been elaborated; they are
also influential for BCI design.
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A classical scheme of movement control includes a set
of hierarchically organized regions of nervous system. As
suggested by this scheme, cortical structures are at the top of
this hierarchy. They control the most complex movements, such
as finger movements. Brain stem and spinal cord supervise
simpler functions: postural automatisms and spinal reflexes
[46]. The spinal cord of quadrupeds is known to contain central
pattern generators that control rhythmic movements of the
limbs during walking [47].

Historically, motor control has been described as a
set of reflexes for a long time. The concept of a reflex arch
was proposed by Sherrington [46]. Currently, reflexes are
acknowledged, but the emphasis has shifted to the top-down
control exerted by the brain higher centers during volitional
movements. Typical motor activity contains both voluntary
and reflex components [48]. Some BCls, called shared control
BCls, imitate these two components: they give the control over
higher-level components (the onset and the end of movements,
target choice) to the subject and delegate low-level tasks, such
as maintaining balance, to a robotic controller.

Many modern theories of motor control are based on the
idea that the brain forms an internal model of the body that
is used for both perception of the body configuration and
planning and executing movements. Such an internal model
was first described by Head and Holmes as “body schema”,
which the brain uses to monitor and update information of
multiple signals from the body sensory receptors [49]. Currently,
BCI developers strive to construct neurally controlled limb that
can be finally incorporated into the brain body schema [1]. It
is important to distinguish between the body schema and the
body image. The body schema is a model constructed by the
brain that reflects the structural and dynamic organization of
the body, while the image is a conscious esthetic and sexual
perception of one’s own body.

From the concept of body schema the researchers moved
on towards the modern internal model theory [50]. This theory
describes two parts of the control loop: the controlled object (for
example, an arm with muscles and joints) and the controller (a
neuronal network that controls arm movements). The controller
uses an internal model to generate an expectation of the object
position, as well as an expectation of sensory feedback. The
controller then compares these expectations with the actual
sensory feedback and, if a discrepancy is found, introduces
corrections to the object state. The equilibrium point hypothesis
describes one implementation of this view [51]. According to it,
higher motor centers set an equilibrium point for the controlled
object, and servo-mechanisms of the spinal cord transfer the
object there.

Arm BCI

Arm movements constitute the major part of motor repertoire
of our everyday lives. That is why many BCI developers focus
on the task of arm control. Besides, arm movements have a
substantial cortical component to them, which is convenient for
the developers, because it is easier to record the signals of the
cortex than those of subcortical structures.

Figure 1 shows the interface that reproduced arm
movements. It was an invasive BCl that monkeys used to
control a robotic arm performing reaching and grasping
movements. For decoding, multiple Wiener filters running in
parallel were used.

In another experiment with monkeys, stereoscopic glasses
were used to enable BCI control in a three-dimensional
space [33]. Motor cortical activity was translated into cursor
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Extracellular activity of cortical neurons was recorded by a multi-electrode array implanted into several cortical areas of the monkey. Signals were decoded using Wiener
filters and then transmitted to the robotic arm controller. On the screen, the monkey was presented with a cursor that changed its size depending on the gripping force
the animal applied. The task was to reach toward a virtual object after it appeared on the screen and to grasp it. In one task the monkey controlled the robot using a
hand-held joystick with two degrees of freedom, and the gripping force was determined by how strongly the joystick was gripped. In another task the joystick was not
connected to the robot, and the robot was controlled directly by the commands issued by the motor cortex (Carmena et al., [28]).

position in space. Decoding was initially performed using the
above mentioned method of population vectors. In further
experiments, system accuracy was improved by applying
the adaptive algorithm that minimized trajectory errors. Later,
the same group of researchers demonstrated a BCI which
monkeys used to feed themselves with the robotic arm [52].
Similar technologies involving robotic arms are currently used
to improve the quality of life of paralyzed patients [7, 9].

Also, virtual technologies have been developed, such as a
pair of virtual arms moving on the computer screen and a BCI
for their control [31]. In those experiments several hundreds
of electrodes recorded neuronal activity in both cortical
hemispheres, which enabled monkeys to control two arms
simultaneously.

Functional electrical stimulation

Robotic BCls are necessary in case of limb loss, but if limbs are
paralyzed but not lost, it is possible to use FES. This technology
utilizes electrode arrays for electrical stimulation of muscles with
a set of impulses that imitate nervous system signals. Muscles
activation by stimulation, in turn, produces limb movements.
For surface stimulation, a multi-electrode array is placed
on patient’s skin. Such contact electrodes can be sewn into
clothes turning them into wearable electronic devices (gloves,
trousers, etc.) [563]. Control over BCI can be performed by EEG
beta oscillations, and that is how the movements of a paralyzed
hand have been reproduced [54].

Using invasive BCls, a paralyzed monkey hand was
moved by FES, the movements being quite precise [40]. In the
experiments involving FES for a larger number of muscles and
decoding over a hundred of neurons, monkeys with paralyzed
arms could perform grasping [55, 56]. Recently, such invasive
BCl-based control has been demonstrated by a paralyzed
human [6].

According to the experimental data, a part of lower-level
functions, such as adjusting the limb position in the external
force field, can be handed over to the local self-control. In this

case, feedback systems are used, such as position sensors
[67]. FES-based BCls can take into account the specifics of
muscle contractile properties. For feedback, vision can be used
[63], as well as sensory substitution with vibrostimulation.

BCls for bipedal locomotion

A possibility of reproducing kinematic parameters of bipedal
walking based on brain cortical activity recording was first
tested by Fitzsimmons, Lebedev and their colleagues [30].
The schematics of this experiment are presented in figure 2.
Monkeys were trained to walk on a treadmill. During this task,
neuronal activity of sensorimotor cortex representation of lower
limbs was recorded while the movements of the monkey’s legs
were video tracked. The BCI decoder was trained to decode
monkey lower limb kinematics. The decoder performed well for
both forward and backward walking directions.

Based on those results, the Walk Again Project was founded,
an international consortium, the goal of which is to develop an
exoskeleton driven by the brain [2]. Nicolelis demonstrated
the EEG-controlled exoskeleton built by Gordon Cheng at the
opening of World Football Cup in 2014. A similar project, the
Mindwalker, emerged in Europe [58]. In parallel, Contreras
Vidal and his colleagues proposed an idea of developing a
leg exoskeleton controlled by slow EEG rhythms; in 2012 they
decoded gait kinematics of a human walking on the treadmill
[59]. In Russia, ExoAtlet, a very practical leg exoskeleton, was
developed [60].

As an alternative to EEG, a possibility of reactivating the
spinal central pattern generator is studied. It was demonstrated
in the experiments on rat models of complete spinal cord
injury that locomotion can be restored using epidural electrical
stimulation combined with treatment with serotonergic
agonists [61].

Nueroplasticity and BCls

Many studies have convincingly demonstrated that learning to
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Fig. 2. Reproduction of kinematics of bipedal walking based on ensemble cortical activity

Activity of neuronal ensembles of monkey sensorimotor cortex was recorded while the animals were walking on a treadmill. Blue curves represent movements recorded
by video tracking system; red curves represent decoded movement (Fitzsimmons et al., [30]).

use a BCI boosts the plasticity of the subject’s brain. It was
speculated that due to that phenomenon, artificial limbs could
become incorporated into the brain representation of the body
and eventually feel and act as normal limbs [1, 62].

Controlling external devices by BCls has a lot in common
with tool use. Thus, in a famous experiment with monkeys
trained to use rakes to retrieve distant objects [63], it was shown
that posterior parietal cortex neurons that normally respond to
objects in the vicinity of the hand started to respond to objects
in the vicinity of rakes. In other words, the brain incorporated
the rakes into the body schema.

Long-term use of BCls can lead to similar changes in the
brain. Indeed, the neurons participating in BCI control change
activity patterns [64]. Correlations between pairs of neurons
also change [28, 31], as well as neuronal tuning to movement
directions [29].

Noninvasive BCls

An important requirement for BCls is safety. Noninvasive BCls
are the safest, as they do not penetrate biological tissues to
record neuronal activity. Numerous types of noninvasive BCls
have been developed so far, mainly for operating wheelchairs
and restoring communicative function by using spelling systems
[44, 45, 65-68].

EEG recording is the most popular method used for the
development of noninvasive BCls. EEG-based BCls can be
independent (based on endogenous activation by motor
imagery) and dependent (based on exogenous activation by
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external stimuli). In the former case, slow cortical potentials,
mu (8-12 Hz), beta (18-30 Hz) and gamma rhythms (30-70 Hz)
are used to exert control [4]. The effectiveness of the method
can be improved by using adaptive decoding algorithms [69].
With exogenous activation, the attention is focused on the
external visual stimulus, which leads to a conspicuous cortical
response, compared to the response to an ignored stimulus;
the patient’s intentions are decoded based on the previously
recorded difference in the response to attended and ignored
stimuli. Thus, during BCI control based on steady-state visually
evoked potentials, a reaction to frequently presented stimuli is
recorded [70]. The subject is presented with several objects
on the screen. Each object appears and disappears at its own
frequency. The subject focuses on each object, one by one.
P300 potentials can be used in a similar way [71].

Artifacts of EEG recording process present a considerable
problem. They can be taken for neural activity and even serve
as controlling signals. Dependent BCls are less sensitive to
artifacts. A better signal quality, compared to EEG, a higher
spatial and temporal resolution and a lower sensitivity to
artifacts are demonstrated by electrocorticographic BCls.
However, they are invasive.

Apart from EEG, magnetic encephalography is used (MEG)
[72]. To register weak magnetic field generated by the brain,
a highly sensitive method is required. Such sensitivity can be
provided by superconducting quantum magnetometers. As a
result, MEG recording requires special equipment and special
conditions, magnetic shielding in the first place. Still, MEG
provides a better temporal and spatial resolution, compared
to EEG.



Another method for brain activity recording is based on
detecting the levels of oxyhemoglobin and deoxyhemoglobin
in cerebral circulation by using near-infrared spectroscopy
(NIRS) with temporal resolution of 100ms and spatial resolution
of 1 cm. The major disadvantage of this technology is a
considerable signal delay (up to several seconds). However, the
BCls based on NIRS are becoming popular [73].

A powerful tool for recording changes in cerebral circulation
is functional magnetic resonance imaging. Its temporal
resolution is limited to 1-2 s, signal delay is about several
seconds, but it stands out in the line of noninvasive methods
because of its unsurpassed spatial resolution that makes it
possible to detect the activity of every brain area [73].

Sensory BCls

Sensory BCls can be used for restoring vision, hearing, the
sense of taste, smell or balance, and tactile and proprioceptive
sensitivity. Functions of sensory organs can be impaired
as a result of peripheral nervous system damage leading to
complete loss of senses (deafness, blindness) and as a result
of damage to the organs that process sensory information of a
higher level (thalamus, cerebellum, basal ganglia, brain cortex);
the latter does not cause a complete loss of sensitivity, though.
An interesting example is blindsight in patients with damaged
visual cortex; they are blind but still can sense and process
visual stimuli subconsciously [74].

At present, sensory BCls cannot replace high-level
components of a sensory system. For example, blindsight
cannot be repaired. Currently, researchers focus on developing
devices for repairing low-level damage associated with
peripheral areas and receptors dysfunction. Such systems
replace physiological sensors with artificial ones that are
connected to undamaged sensory areas [17, 75, 76]. Signal
transmission from artificial sensors to the nerve tissue is usually
mediated by electrical stimulation, but recently optogenetic
methods have gained popularity [77].

We should also mention sensory substitution, a method in
which a signal flow from an artificial sensor is redirected to the
undamaged sensors of other body parts or another sensory
organ. With such sensory substitution, a switch from one
sensor modality to another becomes possible. For example,
artificial vision can be implemented by transmitting the signal
from a video camera to a tactile matrix that stimulates the
back [78].

Cochlear implants

Cochlear implants are the most successful devices among
sensory BCls [13, 14]. Patients with such implants can detect
speech, tell female voices from male voices and even perceive
melodies. Bilateral implantation restores spatial hearing. The
implant consists of six components: (1) an external microphone,
(2) a speech processor that transforms the signal from the
microphone to a stimulation sequence, (3) a transmitter placed
on the skin, (4) a receiver and a stimulator implanted into the
bone under the skin (5), a cable connecting stimulators with the
electrodes, and (6) an array of stimulation electrodes implanted
into the cochlea.

A sequence of impulses is applied to undamaged areas of
the auditory nerve. The use of several electrodes enables to
stimulate various areas of the nerve; the number of electrodes
usually varies from 4 to 22. Several different methods of signal
formation by multichannel stimulation were developed. In
continuous interleaved sampling, a signal from a microphone
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is transformed into a frequency spectrum and the intensity of
the signal in each band is transformed into the intensity of a
stimulus. Compression of a wide dynamic range of signals
into a narrow range of stimuli is performed using non-linear
transform. Also, there are systems based on the continuous
analysis of a signal from a microphone where an electrode is
selected for signal transmission in a recurrent cycle.

For patients with severely damaged cochlear, brain stem
implants have been developed [13]. These devices stimulate
the cochlear nucleus of the brainstem by means of surface
or penetrating electrodes. Some patients who tested such
implants reported a low quality of sound recognition, while in
the others the device performance was comparable to cochlear
implant performance.

Visual prosthesis

Visual prostheses are currently capable of restoring simple
visual sensations [79]. Visual prostheses can be divided into
two groups: retinal prostheses and brain prostheses. Retinal
prostheses are used for treating pathologies that do not affect
the visual nerve, while brain prostheses are used if the visual
nerve is damaged, and it is necessary to stimulate visual
structures of the brain, such as the visual cortex, to evoke
visual sensations.

Depending on the severity of retinal damage, several types
of retinal prostheses can be used. Epiretinal implants stimulate
nerve fibers of retinal ganglion cells by intraocular electrode
arrays (up to 60 channels) that receive frames from a video
camera. We expect that in the future all components of such
prostheses will be implanted inside the eye. Patients with such
implants can perceive the shape of objects, the brightness of
colors and movement direction.

Subretinal prostheses stimulate ganglion and bipolar
cells by electrical signals. They consist of thousands of
microphotodiodes that respond to the level of illumination and
transmit this information to the electrode array. The studies of
these devices are currently at an early experimental stage.

In a transchoroidal prosthesis several dozens of stimulating
electrodes are implanted under the choroid. Compared to
others, this device can be implanted by a quite simple surgical
procedure. Patients perceive stimuli as phosphenes and can
detect simple objects.

As a rule, in non-retinal prostheses electrical stimulation
of visual cortex is used. In 1974 simple visual perception was
restored by implanting 64 electrodes onto the surface of the
visual cortex [25]. It is possible that intracortical microelectrode
arrays can yield better results.

Bidirectional BCls (brain-computer-brain interface)

Biderictional, or sensor-connected BCls decode brain activity
and simultaneously transmit artificial sensory signals to the
brain, thus creating a feedback loop. Figure 3 shows the
schematics of the first brain-computer-brain interface (BCBI)
designed in Nicolelis laboratory by O’Doherty, Lebedev and
their colleagues [80]. Microelectrode arrays were implanted into
motor and somatosensory cortex of monkeys. The first array
recorded intentions, the second one transmitted artificial tactile
sensations back to the brain using intracortical microstimulation.
The BCBI allowed monkeys to explore a virtual object using
a cursor or a realistic image (avatar) of monkey’s arm. Virtual
objects looked alike but had different texture; texture data were
transmitted to the brain through microstimulation.

BULLETIN OF RSMU | 2, 2016 | VESTNIKRGMU.RU



OB30P | HEUPOUHTEP®EUCHI

Brain-net

Networks that connect separate nervous systems have
recently become a popular subject of research. In general, the
task is to create the network that would combine knowledge
and effort of several individuals for more effective problem
solving. Among such distributed networks are a neuron-net
(@ community of people and technologies that use neuronal
signals for communication), a body-net (a net in which the
movements of one individual can be transmitted to another
through FES) and a brain-net (an integration of several brains
by BCl-technologies [81], fig. 4).

CONCLUSIONS

We are witnessing a rapid growth of BCI technologies.
Researchers keep reporting new achievements and are making
further progress in the development of methods and devices
that will help to restore the lost functionality of the human
body. With long-term use of a BCI, an artificial limb can be
incorporated into the body schema formed by the brain. Many
BCI projects are currently at the stage of lab experiments, but
there are a few devices that have been successfully introduced
into clinical practice. We envision the future in which a blind,
deaf and paralyzed patient can live a life of a healthy person,
assisted by neural implants and functional electrical stimulation.
Using BCls for network communication, the mankind can rise
to anew level, the most recent projects on creating the “internet
of bodies and minds” being the first attempt toward that goal.
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Fig. 3. The schematics of the first brain-computer-brain interface

The motor area of the control loop sets the cursor in motion. The desired position
of the cursor is decoded on the basis of motor cortical activity. The sensory part
of the loop serves as a feedback tool. It transmits artificial tactile signals into
somatosensory cortex through intracortical microstimulation (O'Doherty et al.
[80)).
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Fig. 4. Integration of brain activity of several subjects using a brain net

Each monkey was seated in a separate room and watched a virtual arm on
the screen; the task was to touch the object using the virtual arm (A). Signals
from various cortex areas were recorded by a 700-channel invasive electrode
array. After decoding, the signals were sent to the virtual arm, with monkeys
contributing to coordinates equally (B) or with each monkey controlling only
one coordinate (C) or one plane (D). The tasks were performed more effectively
compared to the experiment where only one animal controlled the virtual arm
(Ramakrishnan et al., [81]).
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PRELIMINARY RESULTS OF A CONTROLLED STUDY OF BCI-EXOSKELETON
TECHNOLOGY EFFICACY IN PATIENTS WITH POSTSTROKE ARM PARESIS
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The article presents preliminary results of iMove research study. By the time of this publication, the data of 47 patients have
been processed. The patients in the experimental group (n = 36) were trained in kinesthetic motor imagery using brain-computer
interface (BCI) and a controllable exoskeleton. In the control group, BCI imitation procedures were carried out. In average,
the patients had 9 training sessions with a duration of up to 40 minutes. On completing the training, only the experimental
group showed improvement in scores (results are presented as median and quartiles (25 %; 75 %)): grasp score increased
from 0.5 (0.0; 13.0) to 3.0 (0.0; 15.5) points (p = 0.003) and pinch score increased from 0.5 (0.0; 7.5) to 1.0 (0.0; 12.0) points
(p =0.005) on ARAT scale. In the experimental group, a significant improvement in motor function was found in 33.3 % patients
on ARAT scale, and in 30.5 % patients on Fugl-Meyer scale. In the control group, those scores were lower: 9.1 % and 18.2 %
patients, respectively.
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Assessment of approaches to upper limb function restoration
in poststroke patients with hemiparesis is a highpriority task
in neurorehabilitation [1, 2]. However, none of the existing
methods of motor rehabilitation has been assigned the highest
level of evidence and high grades of recommendation strength
for arm function restoration. The moderate level of evidence for
arm function restoration in poststroke patients is demonstrated
by virtual reality technology, robotic tools (due to abundant
repetitive task practice) and mental training, including motor
imagery [1, 2]. It is important to note that in contrast to motor
imagery methods based on active motor paradigms, such
as robotic technologies and constraint-induced movement
therapy, can be applied to patients with mild or moderate
paresis. In case of plegia or severe paresis, robotic therapy
often plays a role of passive mechanotherapy.

The impact of motor imagery on motor nervous system
activity and neuroplasticity has been demonstrated in multiple
neurophysiological studies. It has been shown that during
motor imagery, primary motor cortex and brain structures that
participate in voluntary movement planning and control are
activated [3-6]. In the study that utilized navigated transcranial
magnetic stimulation of the brain, the subjects who had been
trained in motor imagery exhibited a decreased motor threshold
and larger evoked motor responses of the muscles involved in
fist clenching [4].

Thus, motor imagery remains the only active paradigm for
modulating neroplasticity in motor areas of the brain in patients
with plegia and severe paresis [3, 4, 7, 8]. Motor imagery
can also be used for the rehabilitation of patients with mild
motor dysfunctions as a training tool for more effective motor
planning and accurate motor performance [9]. Motor imagery
can be controlled by kinesthetic feedback provided by brain-
computer-exoskeleton interfaces. Brain-computer interfaces
(BCls) allow for translating brain activity signals into commands
for the external device [10, 11]. With motor imagery, such
signals are represented by sensorimotor rhythm modulation
[12]. If alimb exoskeleton is used as an external device, the BCI
operator receives kinesthetic feedback (the operator needs to
imagine the movement that the exoskeleton is able to perform).

A number of controlled trials have been carried out to
study the efficacy of non-invasive BCls with external assistive
devices that implement kinesthetic feedback. Those studies
enrolled up to 32 patients with poststroke arm paresis. Haptic
Knob [13] and MIT-Manus [14] robots and orthoses [15], which
are not exoskeletons by design, were used as external devices.

Clinical trials of the efficacy of a BCl-based system where
kinesthetic feedback is implemented by a hand exoskeleton
have been conducted in Russia [16-18]. Biryukova et al. [19]
studied one clinical case. However, none of those works
compared the obtained results with the controls. Besides,
clinical effectiveness of training in using a BCI technology to
control the external assistive device has not been studied in
patients at different rehabilitation stages and with different
paresis severity; the effect of repetitive training using a BCI-
external assistive device technology has not been investigated.

In this work we present preliminary results of a
multicenter blind randomized controlled study of the efficacy
of the hand exoskeleton controlled by non-invasive brain-
computer interface for the rehabilitation of patients with
poststroke paresis. The study will be open for participant
recruitment until the number of participants reaches 120.

METHODS

The study was approved by the Ethics Committee of the
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Research Center of Neurology (protocol no. 12/14 dated
December 10, 2014). All patients gave written informed
consent. The protocol of iMove study is listed in the international
registry of clinical trials of the U.S. National Institutes of Health
(ClinicalTrials.gov; study indentifier is NCT02325947).

This blind randomized controlled study has been carried
out at three clinical centers since December, 2014. Among site
selection criteria were the presence of a neurorehabilitation
unit or a motor rehabilitation service and a pool of patients
with a history of stroke at various time points in the past or
hemiparesis of various degrees.

The study included male and female patients aged 18-80
years with a prior stroke (1 month to 2 years before screening);
with a poststroke hand paresis (from mild to plegia on Medical
Research Council Weakness Scale sums score, MRC-SS [20]);
with a supratentorial focal ischemic or hemorrhagic stroke
confirmed by MRI or CT scan; all patients gave written informed
consent. Study participants were either admitted to the clinical
centers or received outpatient therapy.

The following exclusion criteria  were applied: left-
handedness according to Edinburgh Handedness Inventory
[21]; severe cognitive impairment (Montreal Cognitive
Assessment Score >10) [22]; sensory aphasia; severe motor
aphasia; severe vision impairment that would not allow the
patient to follow visual instructions on the computer screen; arm
muscle contracture (Modified Ashworth Scale score of 4) [23].

Withdrawal criteria were as follows: patient’s refusal to
participate in the study; development of acute disease or
decompensation of chronic disease that could possibly affect
the study outcome, including recurrent cerebrovascular events,
acute myocardial infarction, decompensated diabetes, etc.;
therapy with systemic muscle relaxants that started after the
participant had been enrolled (or medication dosage change);
injections of botulinum toxins in paretic arm muscles after the
patient had been enrolled.

Patients who gave informed consent to participate in the
study and met inclusion/exclusion criteria were screened;
their data were submitted to the automated system of
information support for clinical trials (ImagerySoft, Russia);
each participant was given an identification number. Then
participants were randomly allocated to the experimental or
control group (3 : 1).

Patients from the experimental group were trained to use
the BCIl-exoskeleton technology; patients from the control
group were trained to use the BCl-imitating system. Each group
attended up to 12 training sessions (each 40 min long) every
day except weekends (the acceptable idle interval was up to
3 days). Patients from both groups also underwent standard
rehabilitation procedures, such as therapeutic exercises with
the instructor and massage.

In this study we used a BCl based on EEG pattern analysis
and recognition of synchronization/desynchronization of
sensorimotor rhythms during arm movement imagery. EEG
signals were band-pass filtered between 5-30 Hz. We used
the EEG pattern classification based on Bayesian method
[24, 25]. To assess classification accuracy, we used Cohen's
kappa coefficient (k = 1 represented perfect recognition,
k = 0 represented due-to-chance recognition [26] ) and the
percentage of right responses suggested by the classifier
(>33 % value represented more than chance recognition,
because patients performed three mental tasks). The
components of the BCl-exoskeleton system are presented
in fig. 1.

During the session, the patient was wearing an electrode
cap for EEG recording. Electrode gel was applied underneath
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Fig. 1. BCl-exoskeleton system. (A) Schematic of the BCI used in the study: 1 — 32 Ag/AgCl EEG electrodes; 2 — NVX52 encephalograph (Medical Computer
Systems, Russia); 3 — a computer (OS: Windows 7); data are transmitted in real time, EEG parameters are extracted; control command is recognized; 4 — a screen;
5 — the hand exoskeleton; dotted and solid arrows represent visual and kinesthetic feedback, respectively. (B) The hand exoskeleton (Neurobotics, Russia) with

pneumatic actuator for finger extension

each electrode. The exoskeleton was fixed to the paretic arm.
The exoskeleton used in this study is a polymer carcass for
the hand and fingers with robotic pneumatic drive, intended for
finger extension that does not exceed the physiological norm.
During the training session, the patient was sitting in front of the
computer screen; his arms were on the armrest or on the desk
in a comfortable position.

In the middle of the dark screen there was a circle for gaze
fixation with 3 arrows around it; the arrows changed colors to
indicate a new instruction. The patient followed one of three
instructions: to relax and, to imagine a slow extension of the
left hand fingers or the right hand fingers kinesthetically. The
instructions to imagine the extension of the right or left hand
fingers (right or left arrow changed its color respectively) were
presented on the screen in random order for 10 min. Following
the instruction to relax, the patient had to sit still and watch the
center of the screen.

Results of mental task recognition were presented to the
patient via visual and kinesthetic feedback. If the classifier
successfully recognized the task the patient had been
instructed with, the circle in the middle of the screen turned
green and the exoskeleton extended fingers. When other tasks
were recognized, the circle did not change its color and the
exoskeleton did not perform any action.

One training procedure consisted of up to three sessions
described above; each session lasted for 10 s. The patient
rested for 5 s between the sessions.

With the controls, the same components of the BCI system
were used and the same conditions were applied. The patients
in the control group also followed the instruction to relax and
watch the arrow color. The color changed at random, each
change lasted for 10 s, and the exoskeleton opened the fingers
of the paretic hand when the corresponding arrow appeared
on the screen.

Thus, the patient in the control group did not imagine the
movement and did not try to control the exoskeleton, but
received passive mechanotherapy for the paretic hand. EEG
signals were recorded for monitoring.

The researcher who performed clinical assessment of the
patients did not know what group the patient was included
into. This information was only available to the researchers
who conducted rehabilitation sessions using BCl-exoskeleton
system or its dummy.

Before and after the training course, the patients underwent
a procedure for arm movement and arm force assessment

based on Fug-Meyer Assessment scale (FM) and Action
Research Arm Test (ARAT) [27, 28]. Besides, dynamics across
different scale sections were analyzed. The degree of spasticity
was assessed using MAS scale.

We also estimated the percentage of patients with
improvements by 5 points or more on ARAT scale and by
7 points or more in the motor function of upper extremities on
FM scale (A-H sections).

Statistical analysis was done using Mann-Whitney test (for
independent samples). Wilcoxon test (for dependent samples),
Spearman correlation coefficient, RM-ANOVA analysis of
variance, and a maximum likelihood »? test on the PC with
installed Statsoft Statistica 6.0 software.

The data are presented as median and quartiles (25 %;
75 %). Differences were considered statistically significant with
p <0.05.

RESULTS

232 patients were screened for eligibility. Out of 58 patients
who met the inclusion criteria 11 patients refused to participate
after the first or second training procedure. Thus, the study
included 47 patients (33 male and 14 female) with a mean age
of 56 years (48 and 64 years respectively), median time elapsed
after stroke was 8 months (4 and 13 months respectively).
There were 35 patients with ischemic stroke and 12 patients
with hemorrhagic stroke. All enrolled patients were right-
handed and Caucasian. The experimental group consisted of
36 patients; they attended BCl-exoskeleton training sessions.
The control group included 11 patients who had training
sessions with a dummy. The groups were comparable in
terms of age, time elapsed after stroke, and the degree of
neurological deficit. Patients’ demographics and the initial data
are presented in table 1. No statistical differences were found
between the groups with respect to age, time elapsed after
stroke, lesion localization and lateralization and the degree
of neurological deficit. No statistical differences were found
between the patients from three clinical centers with respect
to time elapsed after stroke, type, localization and severity of
neurological deficit.

Mean number of training sessions was 9.5 (8.0; 10.0) in the
experimental group and 10.0 (6.0; 10.0) in the control group,
with p >0.05

In both groups, improvement of arm motor activity
assessed by ARAT and FM scales (arm function sections: A-D,
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Experimental group Control group
Parameter (n = 36) n=11)

Age, years 56.0 (47.0; 64.0) 58.0 (48.0; 73.0)
Sex, male, n 27 (75.0%) 6 (54.5%)
Time elapsed after stroke, months 9.0 (5.0; 13.5) 2.0 (1.0; 12.0)
Lesion lateralization, n

left 19 (52.8%) 8 (72.7%)

right 17 (47.2%) 3 (27.3%)
Lesion localization, n

cortical 2 (5.5%) 2 (18.2 %)

subcortical 19 (52.8%) 8 (72.7%)

cortical - subcortical 15 (41.7%) 1(9.1%)
Rehabilitation period, n

early (1-6 months) 14 (38.8%) 6 (54.5%)

late (7-12 months) 11 (30.6%) 2 (18.2%)

residual (over 12 months) 11 (30.6%) 3 (27.3%)
ARAT score, points 4.5 (0.0; 33.0) 1.0 (0.0; 22.0)
FM score, upper extremity (A-D, H, 1), points 75.5 (61.0; 92.0) 65.0 (61.0; 104.0)
FM score, arm motor function (A-D), points 27.5(11.0; 40.5) 12.0 (11.0; 49.0)
MAS score, points 2.0 (1.0; 3.0 2.0 (1.0; 2.0
Number of training sessions 9.5 (8.0; 10.0) 10.0 (6.0; 10.0)

H, I) was observed. The following improvements on ARAT scale
were observed in the experimental group only: grasp scores
increased from 0.5 (0.0; 13.0) to 3.0 (0.0; 15.5) points, with
p = 0.003; pinch scores increased from 0.5 (0.0; 7.5) to 1.0
(0.0; 12.0) points, with p = 0.005; gross arm movement scores
increased from 2.0 (0.0; 4.5) to 3.0 (1.0; 6.5) points, with
p <0.001 (tab. 2). No statistically significant differences were
found between the groups in motor function improvement
using RM-ANOVA analysis.

Inthe experimental group, a clinically significantimprovement
in the arm motor function on ARAT scale (by 5 points or more)
and on FM scale (by 7 points or more, sections A-D) was found
in 33.3 % patient and 30.5 % patients, respectively. A clinically
significant improvement of arm motor function on both scales
was found in 16.7 % patients of the experimental group. The
observed improvement was associated with the restoration of
wrist motor function. In the control group, the percentage of
patients with clinically significant improvement of arm motor
function was lower: 9.1 and 18.2 % on ARAT and FM scales,
respectively (tab. 2).

In both group, restoration of arm function did not depend on
the time elapsed after stroke and patient’s age (on both ARAT
and FM scales and subscales). In each group, a moderate or
medium correlation between the restoration degree of arm
function (wrist in particular) assessed by ARAT scale and the
initial severity of neurological deficit (r = 0.4, p <0.05) was found;
however, in the experimental group, statistically significant
improvement of wrist function was observed in the subgroup of
patients with initially severe paresis, as well as in the subgroup
of patients with mild or moderate paresis (tab. 3).

Three patients of the experimental group from the second
study site took a second BCl-exoskeleton training course during
another planned hospitalization. The time interval between
the courses was 6 to 9 months. Every course consisted of
8-10 training sessions. As shown in fig. 2, by the time of the
second hospitalization, arm motor function assessed by ARAT
scale had not deteriorated in any patient. The score of patient
1 on FM scale (C-D) was lower at the time of the second
hospitalization, but still considerably higher than the initial
score. During the second rehabilitation therapy course with
BCl-exoskeleton training sessions included, all three patients
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displayed improvement of arm motor function parameters.

None of the patients displayed deterioration of arm functions
on ARAT or FM scale during the study.

During the training sessions, 3 patients had mild headache,
namely, 2 patients from the experimental group (one of them
observed headache during two training sessions out of ten, the
other had headache over the course of all ten sessions) and
1 patient from the control group (during 3 sessions out of 10).

The majority of patients reported attention fatigue 20 to
30 min after the training session. Fatigue was more conspicuous
if a patient had been insomniac the night before the training (2
patients in the experimental group), was prone to depression (2
patients in the experimental group), had other tiring therapeutic
procedures before the session (1 patient in the experimental
group), or was initially weak. The majority of patients thought
that fatigue was the evidence of training effectiveness and felt
good about it.

If there were complaints about headache or fatigue, the
training session was discontinued for that day. For one patient,
the time between the sessions within one training course
was extended to 2-3 min (in agreement with his doctor and
following the patient’s wish). Due to fatigue and bad general
condition, the time between the sessions was increased up to
2-3 days for one patient from the experimental group.

One patient from the experimental group had an episode
of high blood pressure (200/100 mmHg) after the third training
session during the second therapy course, but was able to
respond to medication.

On the whole, none of the patients withdrew from the study
on account of adverse effects.

DISCUSSION

Preliminary results of iMove multicenter blind controlled study
conducted in Russia have shown that a 2-3 week rehabilitation
therapy using a BCIl-exoskeleton technology increases the
number of patients with clinically significant improvement in
arm motor function. This improvement is associated with the
recovery of hand function, the motor imagery of which was
practiced by the patients. It was also shown that only in the
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Table 2. Changes in basic ARAT and Fugl-Meyer scores in each group before and after the study

Experimental group Control group )
Parameter (n = 36) (n=11) P:);:ék;le
Before | After Before | After
ARAT Scale
4.5 (0.0; 33.0) | 7.0 (1.0; 43.5) 1.0 (0.0; 22.0) | 6.0 (0.0; 24.0) 0-57
Total score
< 0.001 0.018
0.5 (0.0; 13.0) | 3.0 (0.0; 15.5) 0.0 (0.0; 5.0) | 1.0 (0.0; 6.0) 0-18
Grasp
0.003 0.423
o 050080 | 15(0.0;10.0) 0.00.0:60 | 1.0(0.0;7.0 0-12
rip
< 0.001 0.043
pinch 0.5 (0.0; 7.5) | 1.0 (0.0; 12.0) 0.0 (0.0; 4.0) | 0.0 (0.0; 5.0) 0-18
incl
0.005 0.423
3.0 (0.0; 29.5) | 5.0 (0.0; 37.0) 0.0 (0.0; 16.0) | 3.0 (0.0; 18.0) 0-48
Total hand score
< 0.001 0.028
2.0 (0.0; 4.5) | 3.0 (1.0; 6.5) 1.0 (0.0; 6.0) | 3.0 (0.0; 6.0) 0-9
Gross movement
< 0.001 0.109
Improvements by 5 points and more on ARAT scale, % (n) 33.3(12) 9.1 (1) 0-100
Fugl-Meyer Scale
75.5 (61.0; 92.0) | 84.5 (63.0; 103.0) | 65.0 (61.0; 104.0) | 72 (65.0; 108.0) 0-126
Upper extremity (A-D, H,l)
< 0.001 0.004
27.5 (11.0; 40.5) | 33.5(15.5; 48.0) | 12.0(11.0; 49.0) | 17.0 (13.0; 54.0) 0-66
Upper extremity motor function (A-D)
< 0.001 0.005
21.0 (10.5; 26.5) | 24.5(13.5;32.0) | 11.0(10.0; 27.0) | 15.0 (11.0; 28.0) 0-36
Proximal arm active movements (A)
< 0.001 0.008
6.0 (1.0; 14.5) | 8.0 (2.0; 18.0) 2.0 (1.0; 19.0) | 3.0 (2.0; 19.0) 0-24
Hand active movements (B-C)
< 0.001 0.049
Numbelj of cases with arm motor function (A-D) improved 305 (1) 18.2 (2) 0-100
by 7 points or more, % (n)

Note: center-aligned are p values obtained from comparing the corresponding scores in each group before and after the study. Statistically significant differences are

shown in bold.

Table 3. Improvement of hand motor function in the experimental group patients depending on the initial severity of paresis

Initial paresis severity on FM n FM scale, points p
scale (B-C) Before the study After the study
Plegia or severe paresis, . .
0-12 points 24 2.0 (1.0; 6.0) 3.0 (1.0; 8.0) 0.004
(of which) . .
0-7 points 20 1.0 (1.0; 2.5) 2.0 (1.0; 6.0) 0.003
Mild or moderate paresis, . .
13-24 points 12 17.5 (14.5; 21.5) 22.0(18.0; 23.5) 0.005
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Fig. 2. Arm motor function dynamics in patients who completed two training courses. | and Il represent the number of hospital admissions (or the training course),
“Before” and “After” represent scores before and after each training course. Time elapsed after stroke with re