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FLUORESCENCE IMAGING OF ACTIN CYTOSKELETON CHANGES
IN CANCER CELLS UPON CHEMOTHERAPY
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Structural organization of actin and actin-binding proteins can be a hallmark of aggressiveness among various populations of
solid tumor cells. Here, we studied the impact of chemotherapeutic drugs (paclitaxel and cisplatin) on actin and alpha-actinin
structural patterns in human cervical adenocarcinoma cell culture HelLa Kyoto using total internal reflection fluorescence
microscopy and single-molecule localization super-resolution microscopy. It was shown that paclitaxel causes disruption of
actin cytoskeleton in cancer cells, both for actin and alpha-actinin. We observed disappearance of stress fibers, accumulation
of filaments in the cell cortex and morphological changes in focal contacts. With cisplatin, we detected a lower number of
thin actin bundles and more dense arrangement of alpha-actinin. Our results suggest that the actin cytoskeleton is a potential
target for antitumor chemotherapy.
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Actin and actin-binding proteins are the cytoskeleton
components forming microfilaments. They are involved in
a variety of processes, such as cell growth, motility, division,
transcription regulation, cell-matrix and cell-cell interactions.
The actin cytoskeleton participates in signal transduction
cascades and intracellular transport of proteins and organelles
[1]. Energy-dependent polymerization and depolymerization of
actin occur continuously inside the cell. The assembly of new
actin filaments is accompanied by the formation of specialized
structures, such as stress fibers, filopodia, lamellipodia. Actin
cytoskeleton rearrangements can manifest cell dysfunction
and its malignant transformation [2]. Cancer cells use various
mechanisms including changes in adhesive and mechanical
properties to support tumor survival and growth. The actin
cytoskeleton structure can determine cancer cell stiffness,
motility and invasion capacity [3].

Studying the structure of the actin cytoskeleton is essential
for understanding the mechanism of antitumor drug action.
For example, the effect of small interfering RNA inhibitors on
cancer cell survival was demonstrated through visualization of
actin cytoskeleton rearrangements [4]. The actin pattern also
served as a criterion to assess the sensitivity of lung cancer
cells to chemotherapy [5]. Moreover, actin itself can be used
as a therapeutic target due to its potential to regulate tumor
growth and metastasis formation [6, 7]. However, compounds
that disrupt microfilament organization are highly toxic and
have not been approved for clinical use yet.

Evaluation of actin cytoskeleton response to treatment
with clinically approved anticancer drugs is a promising area
of research. As a rule, malignant tumors are heterogeneous.
Antitumor treatment outcome largely depends on the elimination
of the most aggressive cell subpopulations. It has been shown
that the most marked changes in the actin cytoskeleton occur
in cells with metastatic capacity [8, 9]. Understanding the actin
cytoskeleton dynamics in response to standard chemotherapy
is important to detect potentially metastatic cells inside the
tumor.

The aim of this work was to study structural changes in
the actin cytoskeleton in cancer cells upon treatment with
chemotherapy drugs paclitaxel and cisplatin widely used in
clinical practice.

METHODS

We used Hela Kyoto (human cervical cancer) cell line as a
model system. The cells were cultured in Dulbecco's Modified
Eagle's medium (PanEco, Russia) supplemented with 10 % fetal
bovine serum (HyClone, GE Healthcare Life Sciences, USA),
2 mM glutamine (PanEco), 50 pg/ml streptomycin (PanEco),
and 50 units/ml penicillin (PanEco) in an atmosphere of 5 %
CO, at 37 °C.

For our experiment, we selected paclitaxel (Taxol) by
Bristol-Mayers Squibb, USA, and cisplatin (Cisplatin-Teva) by
Teva Pharmachemie, Netherlands. Cytochalasin D (Enzo Life
Sciences, USA), an inhibitor of actin polymerization, was used
as a control compound. To calculate LC50 of the chemotherapy
drugs we applied the MTT assay [10], with drug-incubation
period of 24 hours. Optical density of staining was measured
on a Synergy Mx plate reader (BioTek, USA) at the wavelength
of 570 and 630 nm.

200, 000 cells were seeded on 35 mm glass-bottom dishes
(Fluorodish by WPI Inc., USA). The next day the culture medium
was replaced with fresh medium containing chemotherapy
drug (LC50), and cells were incubated for 24 hours under
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standard conditions. Cells without the adding drug were used
as a control. Cells were then washed once with DPBS solution
(PanEco), placed in 1 ml of FluoroBrite DMEM culture medium
(Thermo Fisher Scientific, USA) and stained.

SiR-actin probe (Spirochrome, Switzerland) at 0.5 puM
concentration and Hoechst 33342 (Molecular Probes, Thermo
Fisher Scientific) at 5 pg/ml concentration were used to
stain actin and nuclei, respectively. After 30-minute staining,
fluorescence imaging was performed. SiR-actin [11] allowed
for endogenous actin labeling in live cells without the need for
fixation or wash procedure. The control and three experimental
samples (with paclitaxel, cisplatin or cytochalasin D) were
imaged; each sample was assessed in 10 fields of view.

For alpha-actinin labeling, we used pTagRFP-actinin
expression vector (Evrogen, Russia). Cells were transiently
transfected with pTagRFP-actinin using the X-tremeGene
9 reagent (Roche, USA) according to the manufacturer’s
protocol. The day after transfection, cells were incubated
with the chemotherapy drugs (LC,) for 24 hours. Cells were
washed in DPBS solution and placed into 1 ml MEM culture
medium (Sigma-Aldrich, USA). Then, fluorescence microscopy
was performed. The control and three experimental samples
(with paclitaxel, cisplatin and cytochalasin D) were studied.
Each sample was assessed in 56 fields of view.

Fluorescence imaging was carried out on a Nikon Eclipse
Tiinverted microscope (Nikon, Japan) equipped with 100X Apo
TIRF/1.49 ail objective (Nikon) and EM-CCD-camera iXon3
DU-897 (Andor, UK). To collect a fluorescence signal from SiR-
actin, we used a C-NSTORM QUAD filter (Nikon) and 640-nm
laser (power density of 7.8 W/cm? ). To detect Hoechst 33342
fluorescence, a Nikon Intensilight fluorescence lamp and a BV-
2A filter were used. Actin cytoskeleton was visualized by total
internal reflection fluorescence microscopy (TIRF). TIRF-mode
allows for the observation of thin layers (less than 200 nm)
close to the cell membrane and ensures the highest signal-to-
noise ratio; it is optimal for super-resolution single- molecule
localization microscopy. Data processing was done with Fiji
software [12]. TagRFP-based super-resolution microscopy was
performed as described previously [13].

RESULTS

First, we determined the concentrations of chemotherapy
drugs for treatment. Based on MTT assay results, viability/
drug concentration curves for HeLa Kyoto cell culture were
obtained. LC,  values for paclitaxel, cisplatin and cytochalasin
D were 45 UM, 7 uM and 12.5 pM, respectively.

Then, we assessed the effect of chemotherapy drugs
on the actin cytoskeleton of cancer cells using fluorescence
microscopy. Fig. 1A shows typical HelLa Kyoto cells stained
with SiR-actin (the control sample). Their actin cytoskeleton
represents an extensive network of long stress fibers running
across the cytoplasm in various directions. There are
protrusions at the leading edge of the cell, as actin is enriched
in the cell cortex. The image also shows a web-like meshwork
of thin microfilaments that fill the entire cytoplasm. Cells
under cytochalasin D treatment do not contain typical stress
fibers. Their formation is driven by assembly of microfilaments
from actin monomers, but in the presence of cytochalasin D
this process is impeded. Here, short filaments along with
dotted actin structures evenly distributed over the cytoplasm
are typical. Stress fibers are rare and can be found near the
plasma membrane only. Cells are more rounded and do not
have protrusions at the leading edge (fig. 2B). No significant



damage to the microfilament organization is observed in cells
treated with cisplatin. Here, HelLa Kyoto cells have a typical
irregular shape with numerous stress fibers commonly found in
spread cells. However, unlike the control sample, cells do not
contain a network of thin microfilaments; no actin enrichment
is found in the cell cortex after cisplatin treatment (fig. 1C). The
paclitaxel sample reveals a more dramatic reorganization of
the actin cytoskeleton, as compared to the cisplatin sample.
For example, cells have almost no cytoplasmic protrusion and
tend to be more round. Actin is mainly accumulated in the cell
cortex. Microfilament fibers are rare, and stress fibers are absent
(fig. 1D). Notably, the majority of cells are multinucleated.

A more accurate analysis of actin cytoskeleton changes was
performed using super-resolution single-molecule localization
fluorescence microscopy. We visualized a fine structure of
the actin-binding protein alpha-actinin. In the control sample,
cells show a typical pattern of alpha-actinin distribution along
the actin bundles. Alpha-actinin completely fills the cytoplasm
forming slight thickening at focal adhesion sites (fig. 2A).
Cytochalasin D triggers complete disorganization of alpha-
actinin, which is in accordance with actin aggregation and the
absence of long stress fibers observed by TIRF microscopy.
Isolated alpha-actinin structures of 200-250 nm in diameter
are evenly distributed throughout the cell (fig. 2B). Cells treated
with paclitaxel become round and lack protrusions and stress
fibers. Alpha-actinin is accumulated in the cell cortex. The
subdiffraction-resolution image shows substantial thickening
and convergence of alpha-actinin fibrils at focal adhesion
sites (fig. 2C). The least conspicuous changes are induced by
cisplatin. Here, cells have an irregular shape and a common
dotted cytoskeleton (fig. 2D). The structural changes include
a more dense packing of alpha-actinin.

DISCUSSION

In this work, we have studied the effect of chemotherapy drugs

paclitaxel and cisplatin on the actin cytoskeleton structure.
Paclitaxel belongs to the taxane family. Its mechanism

of action is associated with the disruption of tubulin system;
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stabilization of microtubule assembly inhibits cell proliferation.
Murakami et al. [14] have shown that taxane-based therapy
reduces alpha-actin content in the stromal cells of breast
tumors. Our findings demonstrate that, besides microtubules,
microfilament system of cervical cancer cells also responds
to paclitaxel treatment. Significant reorganization of actin
structures observed (the appearance of rare thin curved
filaments in the absence of stress fibers) is in agreement with
the results obtained with MCF7 breast cancer cells treated with
taxanes [15].

Interestingly, the majority of cells became multinucleated
after incubation with paclitaxel. Its binding to beta-tubulin
increases the number of cells in the G2/M phase and
induces apoptosis and polyploidy [16, 17]. Actin skeleton
rearrangements detected in Hela Kyoto cell line could be
indirectly related to the multinucleated phenotype. It is known
that in normal multinucleated cells, such as osteoclasts,
actin undergoes significant changes and represents isolated
podosome-forming structures [18]. Giant multinucleated cells
have been observed in HelL.a-derived cell culture where actin
is mainly accumulated in microspikes at the ventral face of the
cell and in dotted podosome-like structures [19].

No direct link between the therapeutic effect of cisplatin
and its impact on the actin flament rearrangement has been
established. The mechanism of cisplatin action is associated
with the ability of platinum ions to form intrastrand cross-links
with DNA purine bases. As a result, DNA repair is inhibited
and DNA damage induces apoptosis in cancer cells [20].
Nevertheless, the issue of cancer cell resistance to cisplatin
and the role of actin in this process have been studied. For
example, cisplatin-resistance cancer cells demonstrate
changes in the expression of some cytoskeletal proteins,
including actin, manifesting as abnormal actin-filamin dynamics
[21, 22]. Sharma et al. observed conspicuous difference in the
organization and mechanical properties of actin filaments in
cisplatin-resistant ovarian cancer cells (OVCARS5), compared
to the sensitive cells [23]. In their work, super-resolution
microscopy was used for actin visualization that allowed them
to detect specific patterns at the subdiffraction level, such as
individual bundles or extensions of the cell at focal adhesion

Fig. 1. Effects of chemotherapy drugs (LC, ) on the actin structure in HeLa Kyoto cervical cancer cells. (A) The control sample. (B) Cells incubated with cytochalasin D.

(C) Cells incubated with cisplatin. (D) Cells incubated with paclitaxel

Fluorescence TIRF microscopy. Staining with SiR-actin (Spirochrome, Switzerland) and Hoechst 33342 (Thermo Fisher Scientific, USA). The actin cytoskeleton and the

nuclei are shown in grey and blue, respectively. The scale bar is 10 pm.
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sites. According to our findings, cisplatin has a weaker effect
on the actin cytoskeleton of HelLa Kyoto cells, compared to
paclitaxel. At the same time, super-resolution microscopy data
indicate a high packing density of microfilaments that can
potentially disrupt normal functioning of cancer cells.

CONCLUSIONS

We have studied the effect of two chemotherapy drugs
(paclitaxel and cisplatin) on the actin cytoskeleton in HelLa
Kyoto cervical cancer cells using fluorescence microscopy.
We have found that paclitaxel leads to massive reorganization
of the actin skeleton expressed as disassembly of stress
fibers, actin accumulation in the cell cortex, thickening
and convergence of focal adhesion sites. Cisplatin caused
smaller changes, namely, reduction in the number of thin
microfilament bundles and denser packing of alpha-actinin. We
observed structural changes of actin cytoskeleton induced by
chemotherapy drugs not specifically targeting it. In this light,
actin might be considered as an additional target for anticancer
therapy. Such reorganization of the microfilament system may
affect metastatic and invasive capacities of cancer cells within
solid tumor in vivo. We are planning to study the effect of
chemotherapy on the actin cytoskeleton structure in a mouse
tumor model.
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