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ВЛИЯНИЕ ТИПА АНЕСТЕЗИИ И УСЛОВИЙ ПРОКРАШИВАНИЯ ТКАНЕЙ 
МОЗГА КРАСИТЕЛЕМ 2,3,5-ТРИФЕНИЛТЕТРАЗОЛИЕМ ХЛОРИСТЫМ 
(ТТХ) НА ОЦЕНКУ ИШЕМИЧЕСКОГО ПОВРЕЖДЕНИЯ МОЗГА КРЫС 
НА РАННИХ СТАДИЯХ ПАТОГЕНЕЗА

Изучение ишемического повреждения головного мозга является важным направлением современных медико-био-
логических исследований. К настоящему моменту разработано множество моделей ишемического инсульта, а также 
предложены различные способы визуализации поврежденных тканей мозга. В данной работе мы исследовали, как 
различные условия проведения эксперимента, моделирующего ишемический инсульт у крыс, влияют на интерпрета-
цию результатов в острой фазе заболевания (5 ч с момента окклюзии средней мозговой артерии крыс). Мы показали, 
что на ранней стадии развития патологии существенное влияние оказывает выбор используемой анестезии животных. 
В наибольшей степени повреждение мозга было выражено при использовании для анестезии смеси хлоралгидрат/
Рометар, в наименьшей — при использовании изофлурана. Для визуализации повреждения мозга животных мы ис-
пользовали наиболее популярный краситель 2,3,5-трифенилтетразолий хлористый (ТТХ). Мы установили, что темпе-
ратура и время инкубации срезов мозга в растворе ТТХ также значительно влияют на интерпретацию результатов при 
оценке ишемического повреждения в острой фазе патологии. Оптимальными условиями окрашивания срезов мозга 
в растворе ТТХ являются 30-минутная инкубация срезов при 37 °С.
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THE CHOICE OF ANESTHETIC TYPE AND CONDITIONS FOR 
2,3,5-TRIPHENYLTETRAZOLIUM CHLORIDE STAINING OF BRAIN SLICES 
IS IMPORTANT IN THE ASSESSMENT OF ISCHEMIC INJURY IN RATS 
IN THE EARLY STAGES OF PATHOLOGY

Studies of ischemic brain injury are an important area of modern biomedical research. So far, a lot of ischemic stroke models 
have been proposed, along with different imaging and staining modalities aimed to visualize the damaged tissue. In this work 
we use a rat model to investigate how the experimental setup affects the interpretation of experimental data obtained in the 
acute phase of ischemic stroke (5 hours after the occlusion of the middle cerebral artery). We show the association between the 
choice of the type of anesthesia and the severity of ischemic injury: in our experiments brain damage was the most pronounced 
in the animals anesthetized with a combination of chloral hydrate and Rometar; the least damage was observed for isoflurane. 
Staining was performed using the popular dye 2,3,5-triphenyltetrazolium chloride (TTC). We demonstrate that parameters of 
brain slices incubation in TTC also need to be accounted for when interpreting the results obtained during the acute phase of 
stroke, the optimum incubation time being 30 min and temperature 37 °С.
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ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ   ПАТОФИЗИОЛОГИЯ

Ischemic stroke is one of the most serious neurological 
conditions and the second leading cause of death and 
disabilities worldwide after cardiovascular diseases [1–4]. So 
far, no effective treatment strategies have been proposed for 
this disease, and its pathogenesis remains understudied. 

Of all currently existing models of ischemic stroke [5–12], 
monofilament occlusion of the middle cerebral artery stands 
out as the most common. First described by Koizumi et al. [13], 
it has been improved and adapted for use in different laboratory 
animals, such as rats [14] and mice [15].

Along with the variety of ischemic stroke models, there are 
different techniques allowing visualization of stroke-induced 
tissue damage. Infarcted zones of brain sections can be 
made visible using histological stains, such as traditional 
hematoxylin and eosin [16, 17], or Nissl staining and its 
modifications [18, 19]. Impregnation of nervous tissue with silver 
is reported to be helpful in detecting neuronal degeneration 
in the early stages of stroke [20, 21]. The same is true for Fluoro-
Jade stains [22–24], but the exact mechanism of their action 
is still unknown. One of the simplest techniques to visualize 
ischemic lesions in brain slices is 2,3,5-triphenyltetrazolium 
chloride (TTC) staining [25]. Enzymes with dehydrogenase 
activity found in living cells reduce TTC to formazan, which 
stains healthy tissue deep red, whereas damaged tissue 
lacking healthy mitochondrial activity resists staining. 
Immunohistochemistry also has something to offer and can 
be employed to observe apoptotic cells in the lesion [26, 27]. 
Non-invasive techniques for stroke diagnosis include magnetic 
resonance imaging [28], positron emission tomography [29] 
and single-photon emission computed tomography [30]. The 
list of approaches to ischemic injury visualization is not limited 
to these modalities; detailed information is available in themed 
reviews [31].

Because approaches to studying stroke pathogenesis and 
developing treatment strategies are so different, the Stroke 
Therapy Academic Industry Roundtable (STAIR) has prepared 
a series of guidelines on ischemic stroke modeling [32–35], 
describing, in particular, a number of factors affecting its results 

and their interpretation, such as the selected model itself, the 
animal’s breed, the type of an anesthetic, the visualization 
technique, etc.

Even protocols for standard interventions may vary greatly. 
For example, TTC staining, which is now the most common 
technique used to visualize ischemic areas in brain slices, 
was originally performed on rats’ brain sections 24 hours 
after induced occlusion (the brain sections were incubated for 
30 min at 37 °С) [25]. However, some authors were able to 
visualize infarcted tissue using TTC staining just a few hours 
after occlusion [21, 36–43]. Incubation time of brain slices in 
the TTC solution may vary from 5 min [44] to standard 30 min 
[25]. Some protocols warn that TTC is unstable when heated, 
therefore, staining should be performed at room temperature 
[45]. TTC is mainly used for staining brain slices, but sometimes 
animals are perfused with TTC transcardially [38, 46].

In this work we show that effective visualization of damaged 
tissue obtained from rats with acute ischemia depends largely 
on temperature and duration of incubation of brain slices in the 
TTC solution. These two factors can skew interpretation of the 
results. We also demonstrate that the type of an anesthetic 
affects the scope of ischemic injury in the early stage of stroke 
(5 hours after the occlusion), while in the later stages (24 hours 
after the occlusion) its role is insignificant. 

METHODS

Experiments involving animals were carried out in compliance 
with the Directive 2010/63/EU of the European Parliament and 
the European Council, dated September 22, 2010. The study 
protocol was approved by the Animal Care and Use Committee 
of the Institute of Bioorganic Chemistry, RAS. 

The study was carried out in male Wistar rats (weight 
ranging from 280 g to 330 g) purchased from Pushchino 
breeding facility. The rats were kept in the animal house of the 
Institute of Bioorganic Chemistry in plastic cages, 3 animals per 
cage. The animals had free access to water and food. 

Fig. 1. Effects of different temperatures and duration of incubation of rat brain slices in 1 % TTC solution on visualization of ischemic injury 5 hours after the occlusion. 
The pictures show brain slices obtained from a Wistar rat with the occluded middle cerebral artery. One slice was stained at room temperature, another — at 37 °С. 
Samples were photographed at set time intervals. Anesthetic used: Zoletil/Rometar
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Occlusion of the middle cerebral artery was induced 
according to the protocol [14]. We used three types of 
anesthetics: 

1. isoflurane (marketed as Aerrane by Baxter, USA): a 5 % 
concentration for general anesthesia induction and a 1.5 % 
concentration for anesthesia maintenance.

2. tiletamine hydrochloride/zolazepam hydrochloride 
(Zoletil by Virbac Sante Animale, France; 40 mg/kg) + 
xylazine hydrochloride (Rometar by Bioveta, Czech Republic; 
10 mg/kg), injected intraperitoneally;

3. chloral hydrate (Dia-M, Russia, 400 mg/kg).
The animals were analgesized with 5 mg/kg ketoprofen 

(Ketonal by Sandoz, Switzerland) administered subcutaneously; 
local analgesia was induced by administering 2 % Novocain.

In our study we used commercial middle cerebral artery 
sutures by Doccol (USA; catalog number 403756PK10Re) 
0.185 mm in diameter.

The rats were decapitated after set time intervals, their 
brains removed and cut into 2 mm thick frontal sections, which 
were then placed in 1 % TTC solution (Sigma-Aldrich, USA). 
Staining was done at different temperatures (20 °С and 37 °С).

RESULTS

In an attempt to investigate how different TTC staining 
conditions affect visualization of ischemic lesions, we modeled 
middle cerebral artery occlusion in rats [14]. The occlusion was 

permanent, i. e. the vessel remained blocked throughout the 
experiment. The animals were anesthetized with a mixture of 
Zoletil and Rometar injected intraperitoneally. Five hours after 
the occlusion the brains were removed and cut into 2 mm thick 
frontal sections. Then, some slices were incubated in 1 % TTC 
solution at room temperature, while other were placed into TTC 
preheated to 37 °С. Photos of brain sections were taken at 
equal time intervals to assess how different temperatures and 
duration of incubation in the TTC solution affected visualization 
of ischemic tissue. Lesions became visible after 10 min of 
incubation at both temperatures: unlike the intact areas, they 
were weakly stained (Fig. 1). Further incubation in TTC at 
37 °С produced a more intense color; after 20 min of incubation 
the color contrast between the healthy and ischemic tissues 
became less pronounced, as the damaged tissue developed an 
intermediate pink color. However, at room temperature the color 
contrast between the damaged and healthy tissues increased. 
Longer incubation at 37 °С produced a well-developed color 
throughout ischemic areas (Fig. 1). It is very important to control 
TTC staining conditions when only a short time has elapsed 
after occlusion induction, because damaged tissue may still 
contain living cells affecting color development. Twenty-four 
hours after the occlusion, the injury was clearly visible, and the 
color contrast between the lesion and the healthy tissue did 
not lose its intensity even after 2 hours of incubation at 37 °С.

Our next step was to find out how a choice of an anesthetic 
influences the scope of ischemic brain injury. Damaged tissue 
was visualized using TTC staining. In this series of experiments 

Fig. 2. Effects of different anesthetics on the scope of ischemic injury in rats with the permanently occluded middle cerebral artery (5 hours after the occlusion). Brain 
slices were incubated under identical conditions in 1 % TTC solution for 30 min at 37 °С

Chloral hydrate + Rometar Zoletil + Rometar Isoflurane

Fig. 3. Brain slices of rats anesthetized with different drugs 24 hours after the induced permanent occlusion of the middle cerebral artery. The slices were incubated 
under identical conditions in 1 % TTC solution for 30 min at 37 °С

Isoflurane, 24 hours Zoletil + Rometar, 24 hours
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we also modeled permanent middle cerebral artery occlusion 
in Wistar rats. The animals were anesthetized using three 
types of anesthetics: isoflurane (Aerrane), a mixture of Zoletil 
and Rometar injected intraperitoneally and a mixture of chloral 
hydrate and Rometar also injected intraperitoneally. Five 
hours after the occlusion the brains were removed, sectioned, 
and incubated in 1 % TTC solution at 37 °С for 30 min. The 
lesion size was the smallest in the animals who had received 
isoflurane (this was reliably demonstrated in 6 animals), and the 
color contrast between the damaged and healthy TTC-stained 
tissues was minimal. The most severe damage was observed 
in the animals who had received a mixture of chloral hydrate 
and Rometar (this was reliably demonstrated in 5 animals). The 
Rometar/Zoletil mix produced interesting results. Of 7 animals, 
only 2 developed massive stroke; in 5 other animals the lesions 
did not develop a contrasting color during staining (Fig. 2). To 
sum up, the choice of an anesthetic is an important factor that 
must be accounted for when studying acute ischemia. The 
underlying cause of the contributions made by anesthetics 
is not clear, though. The neuroprotective effect of isoflurane 
has been reported by a number of authors [47–49], but its 
mechanism remains unexplained. Interestingly, 24 hours after 
the occlusion of the middle cerebral artery in rats, the size of 
the lesion did not depend on the type of an anesthetic (Fig. 3). 

 

DISCUSSION

We have analyzed how different factors affect the results of 
TTC staining of brain sections obtained from rats with induced 
permanent ischemia. Our study demonstrates that visualization 
of damaged tissue in the early phases of stroke (5 hours after 
the occlusion) is particularly sensitive to TTC staining conditions 
(incubation temperature and duration) and the type of an 
anesthetic. Therefore, we do not recommend TTC staining for 
assessing the size of the lesion in the early stages of ischemic 
stroke, regardless of the opinion expressed in a number of 
academic works.

Besides, TTC staining does not provide unambiguous 
evidence about the viability of cells in the ischemic tissue 
during the acute stage. TTC is an indicator of mitochondrial 
dehydrogenase activity. A number of studies confirm that 
mitochondrial dysfunction is one of the major consequences 
of ischemia [50, 51]. However, an intermediate color developed 
by tissue during staining raises a question of interpretation. 

Normally, in healthy tissue TTC is enzymically reduced to 
formazan, which stains the tissue deep red. In dead tissue this 
reaction does not happen, and the tissue remains white. But in 
our experiments the ischemic tissue developed an intermediate 
pink color whose intensity was growing as the incubation time 
and temperature of the environment were increasing. In the 
study [52] the researchers calculated the proportion of intact 
mitochondria in the brain sections that were subject to TTC 
staining and developed or did not develop a color. The study 
showed that about 5 % of mitochondria were intact in the areas 
that did not stain. Intermediate pink meant that the proportion 
of functioning mitochondria in the lesion was higher. 

It is known that permanent occlusion does not necessarily 
cause immediate damage to mitochondria, and the latter remain 
intact for a few hours or even days, while other cell organelles, 
such as the nucleus, have already been destroyed [52]. In this 
case TTC-based visualization will not show tissue damage 
and, therefore, the real picture of progressing pathology will 
be blurred. A more traumatizing ischemia-reperfusion injury 
causes more rapid damage to mitochondria, which also should 
be accounted for when working with certain stroke models. 
Besides, TTC staining is not recommended for longer than 
24 hours following artery occlusion because the lesions can 
accumulate inflammatory cells with intact mitochondria [52].

CONCSLUIONS

Our study conducted in rats with the permanently occluded 
middle cerebral artery demonstrates that estimates of the 
ischemic injury size in the early stages of stroke are affected 
by a number of factors, including the type of an anesthetic and 
staining conditions. Five hours after the occlusion, the least 
damage was observed in rats anesthetized with isoflurane; 
the most severe damage was observed in the animals who 
had received the chloral hydrate/Rometar mix. The optimum 
conditions for TTC staining of brain slices are 30 min incubation 
at 37 °С. Protocols that recommend a shorter incubation time 
and lower temperatures can yield incorrect results for the 
samples obtained in the early stages of stroke. But 24 hours 
after the occlusion damaged areas can be effectively visualized 
using TTC staining, regardless of incubation time/temperature 
and the selected anesthetic. Therefore, 24 hours are optimal 
for qualitative and quantitative TTC-based analysis of ischemic 
brain injury.
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