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The antibiotic era: from victory to defeat

Back in the early 19th century an opinion prevailed that disease 
is caused by imbalances in the body. It was only in the mid-
century that Louis Pasteur linked infections to their causative 
agents, germs. The day in 1928 when penicillin was discovered 
by the British bacteriologist Alexander Fleming became a 
milestone in the history of medicine, marking the advent of 
the antibiotic era. Antibiotics were initially seen as a universal 
remedy, a super weapon capable of turning the tide in the 
war against infectious diseases. But the euphoria did not last 
long. As our knowledge accumulated, more new antibiotics 
were discovered with various mechanisms of action, different 
properties and spectra of activity; but bacteria struck back by 

developing resistance to those drugs, frustrating the efforts of 
researchers and doctors [1]. So hopes were pinned on last-
resort antibiotics, such as colistin and daptomycin. 

In May 2015 the World Health Organization (WHO) admitted 
that bacterial resistance to antibiotics was the underlying 
cause of the ongoing healthcare crisis and proposed the 
Global Action Plan on Antimicrobial Resistance [2]. However, 
it was only a few months after that a mobile colistin-resistance 
gene was discovered in November 2015 [3]. A similar report 
followed in October 2016 describing a daptomycin-resistant 
Staphilococcus aureus strain capable of inactivating the 
antibiotic by releasing membrane phospholipids into the 
surrounding environment once they have bound daptomycin 
[4]. In September 2016, a month before that report, an 
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American patient died of sepsis caused by the gram-negative 
“superbacteria” Klebsiella pneumoniae resistant to all 26 
antibiotics approved in the US [5]. The analysis of all known 
antibiotics and their therapeutic combinations published by 
WHO in 2017 [6] uncovered a sad truth: there is currently 
no cure for infections caused by gram-negative multidrug-
resistant bacteria. Last-resort antibiotics, the defense we 
thought reliable, no longer work, and trivial infections can kill 
once again. This urges us to develop novel antibiotics or start 
searching for an alternative that will be just as effective. 

Sources for new antibiotics

Antibiotics are natural, synthetic or semisynthetic chemicals 
whose small concentrations are capable of inhibiting microbial 
growth. The primary source of clinically important antibiotics is 
actinomycetes and sometimes non-mycelial bacteria, so these 
microorganisms may still have something new to offer. Another 
way to discover a novel antibiotic is a screening for a candidate 
chemical structure and predicting its orientation and position in 
the active site of a target protein. 

That said, the search for novel antibiotics has almost 
stopped, and for a few understandable reasons. First, most 
antibiotics target one of three key prokaryotic metabolic 
pathways and processes, including protein biosynthesis, DNA 
replication and bacterial cell wall synthesis [7]. The majority 
of possible approaches to these targets have already been 
proposed and scrutinized. Besides, there is always a risk of 
spontaneous mutations in bacteria that can ruin years of efforts 
spent in a scientific lab and incur additional costs. Second, to 
discover a single antibiotic, one has to analyze about a million 
new actinomycetes [8], which is a very costly procedure. 

Over 90 % of all bacterial species found in the environment 
cannot be cultured in a lab under standard conditions [9]. 
However, recently it has become possible to create specific 
conditions favorable for such bacteria in order to identify 
producers of yet unknown antibiotics among those species. 
This gave rise to two conceptually different search strategies: 
screening for a source of new antibiotics among unculturable 
bacteria and production of novel synthetic antibiotics. Both 
strategies are starting to pay off. For example, screening of 
uncultured soil bacteria has revealed a previously unknown 
antibiotic (teixobactin) that kills gram-positive bacteria [10]. 
Another antibiotic PEG-2S that inhibits Na+ translocating 
NADH:ubiquinone oxidoreductase has been synthesized in the 
lab [11]. 

Of particular interest are synthetic antibiotics targeting 
bacterial bioenergetics [12]. In 2012, the Food and Drug 
Administration (USFDA) approved bedaquiline synthesized 
after 4 decades of research for the treatment of tuberculosis. 
This drug targets mycobacterial ATP synthase suppressing 
bacterial bioenergetics, which is causing death for the affected 
cells [13]. 

Based on the symbiotic theory a supposition was made 
that antioxidants that induce collapse of mitochondrial 
membrane potential can be effective against bacteria. Lately 
it has been found that the antioxidant SkQ1, a synthetic 
triphenyl phosphonium-based compound, can kill bacteria by 
decreasing their membrane potential [14, 15].

Alternatives to antibiotics

In spite of the astonishing variety of approaches to the 
discovery of effective alternatives to antibiotics and more than 
ten years of painstaking research, there have been no serious 

breakthroughs in the therapy of infections. Few candidate 
substitutes seem to work. 

Among the most interesting alternatives to antibiotics 
are vaccines, antibodies, probiotics, immunostimulants, 
photosensitizers, natural bacteriophages, phage lytic enzymes, 
synthetic bacteriophages, antimicrobial peptides, host-
defense peptides, antibiofilm compounds, multidrug efflux 
pump inhibitors, immunosuppressants, liposome entrapment 
of toxins, metal chelators, antibacterial nucleic acids, anti-
resistance nucleic acids, and antibacterial peptides. This list is 
not exhaustive, though. 

Based on the evaluation of clinical potential and relative 
simplicity of use, a conclusion can be drawn that phage lysins 
and multidrug efflux pump inhibitors are the most promising 
therapeutic alternatives to antibiotics, while vaccines and 
antibodies seem to have a good potential as prevention 
tools, and probiotics can be used for both treatment and 
disease prevention. Bacteriophages, antibiofilm compounds, 
antimicrobial peptides and photosensitizers also hold promise; 
however, it is not clear yet whether they can enter the market as 
finished pharmaceutical products to replace existing antibiotics. 
There are also doubts about immunostimulants that are 
sometimes used for disease prevention or as complementary 
drugs: their clinical significance is yet to be elucidated; therefore, 
they do not seem to be an adequate substitute for antibiotics.

Many of the approaches listed above are either undergoing 
experimental trials or exist as theories. More information about 
them can be found in the review [16] ordered by the Wellcome 
Trust foundation (UK) and prepared by the researchers from 
academic circles and the pharmaceutical industry. In this article 
we focus on the most promising and interesting alternatives to 
antibiotics, including vaccines, antibodies, multidrug efflux pump 
inhibitors, photosensitizers, bacteriophages and phage lysins. 

Vaccines

Vaccines are a well-established and effective method of 
disease prevention. In 2015 the novel multicomponent vaccine 
Bexsero (GlaxoSmithKline Biologicals, UK) against Neisseria 
meningitidis was introduced into the national infant immunization 
program in the UK. Neisseria meningitidis is the causative 
agent of pediatric meningitis and bacteriaemia. Because its 
capsular polysaccharide MenB, which is a virulence factor, 
resembles human cell adhesion molecules, effective induction 
of antibodies against meningococcal infection is a difficult 
task. A group of British researchers managed to solve it by 
conducting a bioinformatic search for a candidate antigen. The 
antigen contained in the outer membrane vesicles was later 
shown to elicit sustained immune response upon vaccination. 
The approach used by the British researchers is referred to as 
reverse vaccinology. Bexsero is effective against 73 % to 88 % 
of group B meningococcal strains (MenB) [17]. That said, it is 
still very unlikely that antibiotics will be fully replaced by such 
vaccines in the nearest future. 

Antibodies

A wide range of unique properties makes antibodies a keystone 
of contemporary medicine. Pathogen-specific monoclonal 
antibodies are either used independently for disease prevention 
or in combination with antibiotics to treat bacterial infections 
[18]. Antibodies neutralize the effects of bacterial toxins 
[19–22]; they can also be directed against bacterial antigens 
[23–25] and quorum-sensing signals [26, 27]. Together, 
traditional antibiotics and antibodies open new possibilities for 
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inhibiting biofilm formation enhancing the effect of antibiotic–
based treatment and can be employed for combating persister 
cells insensitive to antibiotics [28, 29].

Multidrug efflux pump inhibitors 

Although these compounds were known before, they are 
now receiving closer attention [30, 31] owing to the peculiar 
interactions between the substrates of multidrug efflux pumps 
and their inhibitors [15, 32]. Efflux pump inhibitors are a 
conceptually new approach to fighting bacteria not mentioned 
in the review [16], helping to reduce therapeutic concentrations 
of antibiotics administered to a patient by an order of 
magnitude or two. This phenomenon was first demonstrated 
using a novel antibiotic SkQ1, with pump inactivation leading 
to a 50-fold reduction in its minimum inhibitory concentrations. 
The bad news is that normally several pumps are involved 
in pumping antibiotics out, and the inhibitors often affect 
a multitude of different pumps simultaneously. Importantly, 
SkQ1 is recognized only by the main multidrug efflux pump 
of Escherichia coli, AcrAB-TolC [15]. Indeed, the use of efflux 
pump inhibitors provides a solution to the problem of antibiotic 
resistance.

Photosensitizers

Antimicrobial photodynamic therapy or inactivation (aPDT or 
aPDI) is new effective method of killing gram-negative and 
gram-positive bacteria and yeast [33–36]. aPDI employs a 
non-thermal reaction induced by the interactions between 
visible light photons and a photosensitizer, such as  methylene 
blue, chlorin, porphyrin, chlorophyll or their derivatives, in 
the presence of oxygen. Reactive oxygen species produced 
as shown in Fig. 1 effectively kill bacterial cells, including 
Pseudomonas aeruginosa. This therapy is in particular demand 
in dentistry and dermatology [36] where it can replace local 
antibiotic treatment.

Phage therapy

Bacterial viruses or bacteriophages constitute the largest 
group of viruses with double-stranded genomic DNA, although 

there are phages with single stranded DNA and single/double-
stranded RNA [37]. In total, the number of phages is estimated 
to be as high as 1031–1032 [38]. They play an important role in 
the regulation of the world’s bacterial population. Phages kill 
20–40 % of sea bacteria per day [39]. The use of phages as 
therapeutic agents was proposed and successfully tested by 
Twort [40], D’Herelle [41], Bruynoghe and Maisin [42] in the 
early 20th century. However, phages did not become a popular 
treatment option at that time largely because antibiotics kept 
gaining ground and there was a lack of theoretical knowledge 
to explain phages’ failure in clinical trials [43].

According to the contemporary views, phages used for 
treating bacterial infections must meet a few requirements: 1) 
they have to be lytic; 2) their therapeutic concentrations must 
be calculated for each particular infection; 3) a phage receptor 
involved must be well studied; 4) the final formulation must be 
free of bacteria and 5) contain viable bacteriophage particles 
[44–46]. The positive effect of phage therapy, i.e. reduction in 
the pathogen count down to the level at which the organism 
can handle the infection on its own [47], varies between 
individuals depending at the same time on a few other factors, 
which prevents phages from entering American and European 
markets [46].

Both bacteriophages and antibiotics directly attack 
bacteria; therefore, their effectiveness can be compared. 
Advantageously, bacteriophages are more specific for certain 
bacterial strains, such as Clostridium difficile that causes 
intestinal infections or diarrhea following antibiotic treatment 
[48]. Also, phage therapy is more sparing than antibiotic-based 
therapies [49, 50]. However, if infection is caused by multiple 
different bacteria, as is the case with wounds, bacteriophages 
are far less effective than antibiotics [51].

In the experiment [52] E. coli were infected with 
bacteriophages collected in two geographically distant regions: 
Mexica and Bangladesh.  The tested phages turned to be highly 
specific for bacteria from their home region [52]. However, no 
significant differences were observed in the outcome of two 
different treatments (with a Russian bacteriophage cocktail and 
a placebo) applied to the cohort of 160 Bangladeshi children 
with E. coli-associated diarrhea [53]. Bacteriophages directed 
against antibiotic-resistant bacterial strains are easier to find in 
those regions where these bacteria are indigenous [54], which 
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provides a new insight into the problem of antibiotic resistance 
and the use of phage therapy.

An idea to use bacteriophages for treating infections caused 
by biofilm-forming bacteria seems quite attractive. Antibiotics 
are not the best option here: they inhibit biofilm formation only 
when administered in high toxic doses [55]. Experiments in 
vitro have demonstrated that bacteriophages prevent formation 
of biofilms and even destroy them, especially in the case of 
Listeria monocytogenes, P. aeruginosa and Staphylococcus 
epidermidis [56, 57].

To predict possible complications or adverse effects of 
phage therapy, one should be aware of all nuances of phage 
biology and genome since many phages contain genes coding 
for virulence factors or toxins [58] or conferring resistance to 
antibiotics [59–62]. Phage therapy is difficult and requires more 
caution than antibiotic treatment because of the phenomena 
of phage-associated botulinum toxins [59], diphtheria toxins 
[58], cholera toxins [63], and phage-triggered conversion of 
non-toxic bacteria into toxic [64]. It is believed that life cycles 
of bacteriophages (Fig. 2) can vary from lytic to lysogenic, 
including pseudo lysogenic and defective [65, 66]. The genomic 
analysis of the gigantic bacteriophage P. aeruginosa [67–69] 
has demonstrated that its gene products very much resemble 
proteins with yet uncharacterized function produced by other 
organisms.

To sum up, complicated life cycles, a risk of conversion and 
resistance gene transfer and the variability of phages, as well 
as mutations in the bacterial population, render phage therapy 
somewhat unreliable and unpopular, in spite of its good clinical 
potential. 

Phage lytic enzymes (phage lysins)

A bacterial cell envelope is a barrier in the way of bacteriophage 
DNA that enters the cell in order to infect it or is released 
back into the surrounding environment as a viral particle. 
The cell envelope is a complex organized system of lipid and 
peptidoglycan layers protecting the cell from the invasion of 
foreign agents. The cell envelope of gram-negative bacteria 
has three components, including the inner plasma membrane, 
peptidoglycans and the outer membrane [70, 71], while the cell 
envelope of gram-positive microorganisms consists of only two 
components and misses the outer membrane.

The hardest to penetrate is the peptidoglycan layer 
built from alternating residues of N-acetylglucosamine and 
N-acetylmuramic acid linked by β-1,4-glycosidic bonds and 
short peptide chains. Linked together, peptidoglycan blocks 
(referred to as murein) form a gigantic macromolecule that 
ensures mechanical stability of the layer and its impermeability 
to viruses and toxic factors with big molecular weight [37, 70, 
71]. Therefore, to get inside the cell, the phage has to locally 
disrupt the integrity of cell membranes and the peptidoglycan 
layer. This is done by lytic enzymes called bacteriophage lysins 
(phage lysins, endolysins or virolysins).

Importantly, the peptidoglycan layer of an infected cell is 
lysed in a two-step process [72] which includes “lysis from 
without” followed by phage DNA passage into the cell and 
“lysis from within” facilitating release of new phage particles into 
the environment. Normally, the first type of lysis is performed by 
a capsid-associated phage lysin, such as the gp5 baseplate 
protein produced by the T4 bacteriophage; this lysin has a 
functional domain with lytic properties [73, 74]. “Lysis from 
without” is limited to a particular site on the membrane and lasts 
just enough time for phage DNA to enter the cell and not be 
killed by the phage. “Lysis from within” is usually performed by 

a soluble phage lysin and is not site-restricted but very limited 
in time. It follows the massive synthesis of phage lysins in the 
cell and is activated in parallel with holin integration into the cell 
membrane. Holin is a regulatory protein that forms nonselective 
pores in the bacterial membrane. These pores disrupt bacterial 
metabolism and make the peptidoglycan layer vulnerable to 
phage lysins, which results in the total lysis of the layer, cell 
damage and release of phage particles into the environment 
[75–77].

Soluble phage lysins triggering massive “lysis from within” 
are interesting candidate alternatives to antibiotics: they can 
effectively lyse peptidoglycan and, unlike phages, do not 
depend on holin presence.

There are a few classifications of phage lysins [78–85], 
including the one based on the mechanism of their action: 1) 
lysozymes, which hydrolyze β-1,4-bonds between the residues 
of N-acetylmuramic acid and N-acetylglucosamine in the 
peptidoglycan molecule; they are subdivided into muramidases 
and lytic transglycosylases; 2) N-acetylmuramoyl-L-alanine 
amidases, which hydrolyze the amide bond between 
N-acetylmuramic acid and L-alanine; 3) peptidases, which 
hydrolyze the peptide bond between peptidoglycan amino 
acids,  and 4) esterases (Fig. 3). 

A study of autolytic enzymes of S. pneumoniae revealed 
that phage lysins have a modular structure, with one domain 
recognizing the site of lysis and the other cleaving peptidoglycan 
[86]. The modular structure appeared to be typical for both 
previously discovered and new phage lysins [87–89], which was 
later confirmed by genetic engineering experiments involving 
rearrangement and combination of functional domains [90].

Of course, not all phage lysins have equal potential to 
become therapeutic agents but some of their properties, such 
as the ability of PlySs2 to retain its function after 10 hours of 
freezing and thawing cycles [91] and the ability of PlyG to attack 
endospores of Bacillus anthracis [92], make phage lysins an 
interesting object for research. They are also species-specific, 
i. e. they kill only those bacterial (sub)species that are targeted 
by their phages [93, 94].

Fig. 2. Possible scenarios of phage infection in the bacterial population. 
Reversible stages are shown in red (mutations, premature sequence termination 
in prophages, deletions, insertions, etc.)
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Considering the modular structure of natural phage lysins, 
through simple genetic modifications researchers managed 
to design chimeric phage lysins for treating complex bacterial 
infections caused by methicillin-resistant S. aureus (MRSA) 
[95]. Also, combined with low molecular weight antibiotics, 
such as penicillin or gentamycin, phage lysin Cpl-1 can totally 
eliminate penicillin–resistant pneumococci [96].

However, the absence of phage machinery facilitating 
passage through the bacterial cell wall restricts the use of phage 
lysins. The outer membrane of gram-negative bacteria reduces 
the therapeutic effect of phage lysins almost to nothing [94]. 
However, they do work in gram-positive bacteria. In addition, 
there is a risk of antibody production in response to phage 
lysins, which may interfere with phage lysin “mission”. Both 
in vitro and in vivo experiments demonstrate that antibodies 
impede but not totally block lysis of bacterial cells by phage 

lysins [97], which may be explained by the fact that the affinity 
of the latter to their substrates is possibly higher than the affinity 
of a generated antibody to the enzyme.

CONCLUSION

Although there are a lot of promising alternatives to antibiotics, 
none of them seems to be a perfect substitute for antimicrobial 
drugs. All of them are not so safe, predictable, controllable, 
easy to use or effective. Still, it is obvious that development 
of alternative approaches to treating bacterial infections is a 
vital necessity for today’s healthcare. Combination therapies 
will probably win over others due to the synergistic effect of 
their components: antibiotics and their alternatives working 
together.

Fig. 3. Schematic of bacterial cell envelopes and phage lysin classes that degrade the peptidoglycan layer
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