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Mankind has been fighting infectious diseases for many 
decades now. A serious threat is posed by those infections 
that cause outbreaks or epidemics [1]. Because a successful 
treatment outcome depends in the first place on the accuracy 
of the diagnosis, a search for novel diagnostic approaches 
continues. Unlike classical microbiological methods of 

pathogen identification based on the use of differential culture 
media, polymerase chain reaction (PCR) ensures rapid 
detection of microorganisms regardless of the specifics of their 
life cycle. Evolution of sequencing techniques and free access 
to public databases containing sequencing data encourage a 
more active use of PCR [2].
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CAS13A: ПОЛУЧЕНИЕ И ИСПОЛЬЗОВАНИЕ ДЛЯ ОПРЕДЕЛЕНИЯ 
ВИРУСНОЙ РНК

Использование CRISPR-Cas систем для редактирования геномов организмов в последнее время стало одним из 
магистральных научных направлений. Между тем белки системы CAS можно применять для разработки методов 
молекулярной диагностики. Традиционные подходы к идентификации микроорганизмов имеют ряд недостатков: они 
времязатратны (культуральные методы диагностики), недостаточно чувствительны (иммунологические методы), имеют 
высокую себестоимость и методически сложны (ПЦР, секвенирование). Целью работы было получение функционально 
активного препарата белка Cas13а и изучение его поведения в различных условиях, в том числе при изменении 
концентрации мишени, для дальнейшего использования в диагностических целях. Была создана генетическая 
экспрессионная конструкция, имеющая на 5′-конце T7-промотер и ген сas13a бактерии Leptotrichia wadei. Получены 
препараты функционально активной программируемой РНКазы белка Cas13a, направляющей РНК, а также РНК 
вируса гриппа Б (РНК-мишень). Функциональную активность РНКазы белка Cas13a определяли по появлению 
флуоресцентного сигнала в реакционной смеси, содержащей направляющую РНК, РНК-мишень, молекулярный 
РНК-маячок. Показано, что полученный препарат белка Cas13a способен специфически выявлять мишень на 
примере фрагментов РНК вируса гриппа Б и не обладает неспецифическими видами РНКазной активности. 
Данное исследование может стать основой для создания нового быстрого специфичного и чувствительного метода 
идентификации микроорганизмов.
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CAS13A: PURIFICATION AND USE FOR DETECTION OF VIRAL RNA

The use of CRIPSR-Cas systems in genome editing has recently become one of the major research areas. Meanwhile, CAS 
proteins can be employed to develop novel techniques for molecular diagnostics. Traditional approaches to the identification 
of microorganisms have a few drawbacks: they are time-consuming (microbiological methods), insufficiently sensitive 
(immunoassays), expensive or labor-intensive (PCR, sequencing). The aim of this work was to obtain a functionally active 
Cas13a protein that could be used as a diagnostic tool and study its behavior under different conditions and at various target 
concentrations. We constructed an expression vector with the cas13a gene of Leptotrichia wadei under the control of T7
promoter. We obtained a functionally active Cas13a RNAse with pre-programmed activity, guide RNA, and a fragment of 
influenza B RNA sequence serving as a target. The functional activity of Cas13 RNAse was assessed by fluorescence in 
the reaction mix containing guide RNA, target RNA, and a molecular RNA beacon. The obtained protein Cas13a was able 
to specifically recognize the target and did not exhibit any non-specific RNAse activity. This study can become a basis for 
developing a novel, rapid, specific and sensitive method for pathogen detection. 
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Still, there is a need for novel molecular diagnostic techniques. 
There are a few obstacles preventing a wider application of PCR, 
including high equipment costs and a lack of laboratory facilities 
and qualified personnel. Among the proposed alternatives 
to PCR are mobile biosensors based on a combination of 
physical and biological approaches [3–5] and techniques 
that do not rely on complex equipment [6, 7]. We believe that 
the most promising technique that provides high specificity 
and sensitivity for single molecule detection is Specific High-
Sensitivity Enzymatic Reporter Unlocking, or SHERLOCK [8, 9].

SHERLOCK combines isothermal amplification of total
nucleic acids and Cas13a activity, allowing detection of both 
DNA and RNA molecules. Isothermal amplification ensures 
accumulation of target molecules, while Cas13a acts as a 
sensor capable of accurate target recognition, including single 
nucleotide polymorphisms [9].

Cas13a nuclease activity is initiated when CRIPSR 
guide RNA (crRNA) binds to Cas13a entailing significant 
conformational changes in the protein structure aimed to form 
a channel for the binding of a target RNA [10]. When Cas13a 
“meets” target RNA, a guide crRNA/target RNA duplex is 
formed in a positively charged NUC lobe channel. The target 
RNA serves as an activator: duplex formation catalyzes the 
movement of catalytic domains towards each other, followed 
by the formation of an RNA cleavage site. The use of RNA 
probes enables a visual representation of fluorescence signal 
accumulation as Cas13 exerts its activity.

The aim of this work was to obtain a functionally active 
Cas13a protein and study its behavior under different 
conditions, including varying concentrations of a target molecule 
represented by an RNA fragment of the influenza B virus. 

 

METHODS

Synthesis of the recombinant protein LwCas13a

To obtain the recombinant protein Cas13a of Leptotrichia wadei 
(LwCas13a), a codon-optimized gene synthesized de novo by 
Evrogen, Russia, was incorporated into the gene expression 
vector pET42b(+) under the control of lacТ7 promotor. Gene 
expression was induced in the cells of Escherichia coli BL21(DE3)
pLysS, driven by isopropyl β-D-1-thiogalactopyranoside (IPTG). 
The resulting Cas13a protein was tagged with octo-histidine on 
its C-terminus. The frozen bacterial cells were resuspended in 
the lysing buffer (20 mM Tris HCl, pH of 8.8, 500 mM NaCl, 
5 mM β-mercaptoethanol) and lysed by exposure to cyclic 
pulsed ultrasound. The lysate was centrifuged for clarification 
at 15,000 g for 20 min; the supernatant was then used for 

the affinity chromatography on automated medium-pressure 
system NGC Discoverтм 10 (Bio-Rad, USA) with the 20 ml 
HisPrep FF 16/10 column (GE, Germany) pre-charged with Ni2+ 
ions. To remove non-specifically bound impurities, Triton X-100 
was added to the buffer solutions at a final concentration of 
0.1%. The protein was eluted using a linear imidazole gradient 
(the final concentration was 0.5M). After chromatography, 
Cas13a-containing fractions were combined and dialyzed 
against a storage buffer (20 mM Tris HCl, pH of 8.0, 200 mM 
NaCl, 0.1 mM EDTA). Protein concentrations were measured 
spectrophotometrically at 280 nm wavelength using Implen 
NanoPhotometer (IMPLEN, Germany). Concentrations were 
calculated accounting for the extinction coefficient [11, 12]. 

Acquisition of target and guide RNAs 

Guide and target RNAs were obtained through PCR followed 
by the transcription of PCR products using the qPCRmix-HS 
SYBR kit (Evrogen, Russia) according to the manufacturer’s 
protocol. Guide RNA was obtained using artificially synthesized 
oligonucleotide primers with self-complementary regions. To 
get a target RNA molecule, we amplified a plasmid fragment 
carrying a sequence of the influenza B virus and a sequence 
of the MS2 phage. In vitro transcription of the amplicons was 
aided by the MEGAscript® T7 Kit (Thermo Fisher Scientific, USA).

Testing LwCas13a for non-specific nuclease activities

To test LwCas13a for non-specific nuclease activities, we 
measured fluorescence. Briefly, the fluorescence signal is emitted 
when the reporter RNA molecule RNAseAlert v2 Substrate 
(Thermo Fisher Scientific, USA) is cleaved. The reporter RNA 
molecule is an oligonucleotide beacon with a fluorescent dye 
sitting on its 5′-end and a quencher on its 3′-end. When the 
molecule is cleaved, the dye is separated from the quencher 
emitting light in the green spectrum at 520 nm wavelength. 
The final LwCas13a concentration of 450 nM was incubated 
at 37 °C for 2 hours in the reaction mix containing a nuclease 
buffer and the reporter RNA (40 mM Tris HCl, pH of 7.3, 60 mM
NaCl, 6 mM MgCl

2
, 125 nM RNAseAlert v2 Substrate); fluorescence 

was measured in real time on the QuantStudio 5 Real-Time 
PCR System (Applied Biosystems, USA). RNAse A (Thermo 
fisher scientific, USA) was was used for positive control; pure 
reporter RNA, for negative.

 
Testing LwCas13a endonuclease activity

The reaction mix for testing LwCas13a endonuclease activity 
consisted of a nuclease buffer (40 mM Tris HCl, pH of 7.3, 

Fig. 1. SDS-PAGE of recombinant LwCas13a. Fraction analysis after IMAC: 1 — total protein; 2 — flow through; 3–9 — eluted fractions; M — molecular weight markers

kDa
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60 mM NaCl, 6 mM MgCl
2
), 450 mM LwCas13a, 22.5 nM 

crRNA, 125 мМ RNAseAlert v2 Substrate, 2 μl RiboLock 
RNAse Inhibitor, 100 ng RNA of a tobacco mosaic virus 
(for the background), and different concentrations of target 
RNA. Fluorescence was measured in real time for 2 hours at 
37 °С using the QuantStudio 5 Real-Time PCR System (Applied 
Biosystems, USA).

RESULTS

Purification of the recombinant LwCas13a

The recombinant protein LwCas13a was obtained using affinity 
chromatography. Chromatography products were analyzed by 
denaturing electrophoresis, which revealed that induced E. coli 
cells had produced a water-soluble protein with a molecular 
weight comparable with the predicted LwCas13a weight 
(139.8 kDa) (Fig. 1). 

Optimization of reporter RNA (RNAseAlert) concentrations 
in the reaction mix 

To achieve optimal fluorescence intensity, we conducted a 
series of model tests using RNAse A (Fig. 2) and selected the 

substrate concentration of 125 nM for further experiments. At 
this particular value the maximal dynamic range of 100, 000 
arbitrary fluorescence units was provided.

Testing LwCas13a for non-specific RNAse activities

The obtained LwCas13a protein was tested for non-specific 
RNAse activities by 2-h incubation with the fluorescent 
RNAseAlert v2 Substrate in the absence of crRNA and 
target RNA. The fluorescence signal was not changed during 
incubation. For positive control, we incubated the fluorescent 
substrate with RNAse A; for negative control, the reporter RNA 
was incubated without any additives (Fig. 3). We found that our 
method yielded the LwCas13a protein that did not exhibit any 
non-specific RNAse activity, which allowed us to proceed to the 
study of characteristics of its pre-programmed RNAse activity. 

Testing method sensitivity using the influenza B virus 

Our LwCas13a-based detection method was tested for 
sensitivity in a series of model tests, for which we employed 
a fragment of influenza B viral RNA sequence, which served 
as a target. The lower sensitivity threshold observed was 107 
molecules of viral RNA (Fig. 4 and fig. 5).

Fig. 2. Fluorescence kinetics during incubation of different RNAseAlert
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Fig. 3. Fluorescence kinetics during the study of non-specific RNAse activities of LwCas13a
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Fig. 4. Fluorescence kinetics at different concentrations of target RNA
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DISCUSSION

LwCas13a-based pathogen detection opens up new diagnostic 
horizons. In 2017 Cas13 was adapted for the use in a platform 
called SHERLOCK [7, 9]. The latter combines Cas13a-based 
detection of RNA targets pre-amplified by recombinase 
polymerase amplification (RPA) and Т7-transcription. All 
reactions take place in the same reaction mix. Using this 
approach, the researchers were able to design a diagnostic 
platform for Zika detection. Its attomolar sensitivity and specificity 
proved to be no less inferior to those of quantitative PCR 
(qRT-PCR) and droplet digital PCR. The researchers studied 
Cas13a orthologs to obtain a stable and reliable fluorescent 
signal emitted when Cas13a started to exert its RNAse activity. 
They found that Cas13a of Leptotrichia wadei was capable of 
detecting up to 50 pM of target RNA [7]. So, this enzyme served 
as a basis for the SHERLOCK platform. Although the sensitivity 
demonstrated by Cas13-based detection was high, the 
researchers decided to investigate a possibility of combining it 

with different types of isothermal amplification and established 
that RPA combined with transcription and the effect of Cas13a 
RNAse activity could improve the sensitivity of the method even 
more. SHERLOCK is able to discriminate between target RNAs 
that differ in only one nucleotide and are present in the solution 
at very low concentrations; the platform can also be used as a 
portable tool [7, 9].

In our research work we have synthesized a codon-
optimized variant of LwCas13a. Unlike the previously described 
protein [7, 9], our protein had a different sequence changed for 
more effective expression in E. Coli cells. The protein yield was 
up to 10 mg from 1L of culture (Fig. 1). We have also elaborated 
a method for Cas13a purification and tested it to discover that 
programmed RNAse does not exhibit any non-specific RNAse 
activity. We ran a few in vitro tests to evaluate the specificity 
of Cas13 RNase activity against the fragments of viral RNA. 
Without target pre-amplification by previously described RPA 
and T7-transcription [7, 9], the sensitivity of our technique was 
107 molecules per reaction.

Fig. 5. Fluorescence kinetics at small concentrations of target RNA of the influenza B virus
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In the course of this work we synthesized a codon-optimized 
variant of Leptotrichia wadei Cas13a that exhibits specific 
RNAse activity in E. coli cells. The obtained protein is deprived 
of non-specific nuclease activities and can specifically detect 
the target, which in our case was a fragment of influenza RNA. 

Further research will be aimed at perfecting the technique, 
improving its sensitivity, studying programmed RNAse 
specificity, and increasing multiplexity. Besides, we will attempt 
to create a Cas13a-based diagnostic system for portable use. 
Field diagnostic tools can be of great assistance in monitoring 
the agents of infection in their natural reservoirs, preventing the 
invasion of pathogens into the human population [13–15].
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