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ЛИМФОЦИТЫ TH1: КОРРЕЛЯТЫ ПРОТЕКЦИИ ИЛИ МАРКЕРЫ 
АКТИВНОСТИ ТУБЕРКУЛЕЗНОЙ ИНФЕКЦИИ?

Создание новых противотуберкулезных вакцин и разработка методов патогенетической хозяин-ориентированной 
терапии туберкулеза требуют понимания механизмов, ответственных за протективный противотуберкулезный иммунитет. 
На протяжении долгого времени основным коррелятом протекции считались антиген-специфичные лимфоциты Th1. 
Однако со временем накопились сведения, не согласующиеся с этой концепцией. В статье обсуждаются спорные 
вопросы, касающиеся роли лимфоцитов Th1 в противотуберкулезном иммунитете, и возможности их использования 
в качестве коррелятов протекции при проведении доклинических и клинических исследований эффективности 
разрабатываемых вакцинных препаратов.
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TH1 LYMPHOCYTES: CORRELATES OF PROTECTION OR MARKERS OF 
TUBERCULOSIS INFECTION ACTIVITY?

Development of new tuberculosis (TB) vaccines and host-oriented therapy requires understanding mechanisms mediating 
protective antituberculous immunity. Antigen-specific Th1 lymphocytes have long been considered as the main correlate of TB 
protection. However, recent data do not confirm this concept. This article discusses debatable issues concerning the role for 
Th1 lymphocytes in antituberculous immunity, as well as their use as correlates of protection in preclinical and clinical studies 
assessing the effectiveness of new candidate TB vaccines.
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In the Russian Federation, tuberculosis (TB) is on the 
decline [1]. However, despite the decreasing morbidity and 
mortality rates, the disease is still a serious threat, especially 
considering the spread of HIV infection and drug-resistant 
strains of Mycobacterium tuberculosis (Mtb). Other factors 
that contribute to TB spread are new immunity disrupting 
factors, such as commonization of transplantation, spread 
of autoimmune diseases and allergies, population ageing, 
insufficient physical activity. There are reasons to believe that 
they will play an increasingly important role. In this connection, 
host-oriented therapy aimed to optimize host immunity 
during TB disease and new TB vaccines able to prevent TB 
disease show promise. However their development requires 
understanding the mechanisms of antituberculous defense and 
knowing immunological correlates of protection. The latter is 
especially crucial for preclinical and clinical studies of new TB 
vaccines, as assessment of their effectiveness is challenging 
and largely based on the evaluation of vaccine immunogenicity. 
Unfortunately, exact mechanisms of TB protection are not fully 
clear, and TB protection correlates remain unidentified. Antigen-
specific Th1 lymphocytes have long been considered as the 

main correlate of TB protection. However, recent data have not 
confirmed this concept. This article discusses debatable issues 
concerning the role for Th1 lymphocytes in antituberculosis 
immunity and their potential usage as TB correlate of protection.

Dependence of protective antituberculous immunity on 
Th1 lymphocytes response

Since the immunology of TB became a subject of research, 
protective antituberculous immunity has been attributed 
to CD4+ Th1 lymphocytes that activate macrophages for 
mycobacteria killing [2–7]. There are a large number of 
experiments and clinical studies supporting this concept. 
Indeed, CD4 T cell deficiency, either due to HIV infection or 
induced experimentally, increases TB risk  in people and makes 
the disease severe in laboratory animals [8–12]. In mice that 
have IFNγ, TNFα, IL12, iNOS or other genes involved in IFNγ-
dependent response knocked out, infection with Mtb leads 
to severe conditions and rapid death [13–19]. Children with 
mutations in genes of IL12/IFNγ axis (i.e., IFNGR1, IFNGR2, 
IL12B, IL12RB1, STAT1, IRF8, ISG15, NEMO, CYBB) are more 



BULLETIN OF RSMU   3, 2018   VESTNIKRGMU.RU| |

МНЕНИЕ   МИКРОБИОЛОГИЯ

14

susceptible to mycobacterial infections, including TB, and the 
diseases developed thereof typically take severe forms [20–29]. 
Cytokine anti-TNF therapy is another factor known to heighten 
the risk of TB development [30, 31]. In mice, antimycobacterial 
activity of macrophages depends on the production of active 
oxygen and nitrogen activated by type 1 cytokines IFNγ and 
TNFα [32–37]. 

The data mentioned laid the foundation of the concept 
stating that Th1 lymphocytes are the main activators of 
macrophages and mediators of TB protection. However, in 
fact, the data summarized above indicate that deficiency in Th1 
response leads to TB development, but this does not mean 
that TB always results from Th1 response deficiency. Moreover, 
a series of experimental studies and clinical observations of 
the recent years have challenged the existence of association 
between TB development and Th1/IFNγ deficiency. 

Lack of correlation between the levels of Th1 responses 
and TB protection: experimental findings

BCG-vaccinated mice infected with Mtb have shown no 
correlation between the level of BCG-induced protection and 
the level of IFNγ synthesized by CD4+ lymphocytes [38, 39]. 
Several studies have reported that CD4+ lymphocytes, derived 
from IFNγ-/- mice and differentiated in Th1-polarizing conditions, 
are capable of controlling the multiplication of Mtb in vitro [40] 
and in vivo when transferred adoptively [41, 42]. Thus, the lack 
of IFNγ does not prevent sufficiently effective control over Mtb 
multiplication in mice. 

In contrast to the control of Mtb multiplication, protection 
against pathological reactions in the lung tissue did require 
IFNγ. Nandi & Behar [42] have adoptively transferred CD4+ 
IFNγ-/- lymphocytes to RAG-/- Mtb-infected mice. IFNγ-/-

lymphocytes protected recipient mice against Mtb multiplication 
as effectively as lymphocytes derived from wild-type mice, 
however unlike the latter, IFNγ-/- lymphocytes did not protect 
mice from pathological reactions in their lungs and death. 
The authors linked protective activity of IFNγ to its ability to 
decrease the induction of "pathological" Th17 population 
and neutrophilic infiltration, i.e., inflammation control. At the 
same time, Barber and coauthors have recently shown that 
excessively high production of IFNγ can do damage and lead 
to death of Mtb-infected mice [43, 44].

Thus, recent studies have demonstrated that Th1/IFNγ 
response can be more complex than plain activation of the 
macrophages' antimycobacterial properties, and that the state 
of protection is largely determined by the organism's ability 
to control inflammatory responses to the infection. Moreover, 
no correlation between the level of vaccine-induced Th1/IFNγ 
response and protection against experimental tuberculosis 
infection was found.

Th1/IFNγ responses to mycobacteria in humans: 
contradictory data

Despite the afore-mentioned fact that Mtb multiplication in 
mice can be controlled in the absence of T-cell derived IFNγ, 
the mainstay concept considers IFNγ as the main part of the 
pathway “T cells – IFNγ – iNOS – active forms of nitrogen –
macrophage activation – suppression of Mtb growth". However 
this pathway does not seem to describe the processes ongoing 
in human macrophages: several studies reported that in 
human macrophages IFNγ did not stimulate active nitrogen 
production and did not cause significant suppression of Mtb 
multiplication [33, 45, 46]. Interestingly, a recent study by Meyer 

and coauthors found no significant impact of IFNγ pathway 
gene variants on tuberculosis susceptibility in a West African 
population (analysis included 20 genes in samples obtained 
from 23 TB patients and 46 healthy donors, and exon gene 
analysis of IFNGR1 in 1999 samples from TB patients and 
2589 control samples) [47]. 

One of the most common approaches to analyze the 
contribution of various immune responses to TB protection in 
human beings implies comparing the responses in TB patients 
and TB contacts  who did not develop disease. The results of 
such comparative studies are ambiguous. Some of them have 
reported smaller numbers of Mtb-specific Th1 lymphocytes 
and weaker IFNγ production in TB patients, which is taken as 
an argument proving that these types of responses contribute 
to TB protection [48–52]. However, in other studies the 
amount of cells producing IFNγ and the levels of IFNγ and 
TNFα production in TB patients were higher than those seen 
in people with latent tuberculosis infection (LTBI) and healthy 
donors [53–55]. In our studies, the levels of antigen-stimulated 
IFNγ production were higher in TB patients compared to 
TB contacts and individuals with LTBI; moreover, we have 
registered higher IFNγ production in patients with active TB 
compared to patients with residual post-tuberculous lung 
tissue alterations [56]. We have also shown that the group of 
patients with recently diagnosed TB had greater percentages 
of IFNγ and TNFα producing CD4+ lymphocytes than people 
with LTBI, TB contacts and healthy donors [57]. In contrast 
to patients with recently diagnosed TB, patients with chronic 
TB do exhibit signs of Th1 inhibition, but apparently this is a 
secondary process [58]. 

Another approach that allows investigating mechanisms 
of immune protection implies comparison of immunological 
parameters in TB patients with diverse TB severity. The 
approach is based on a thorough assessment of the severity of 
diverse TB manifestations in each patient included in the study. 
TB manifestations considered in our study included clinical TB 
forms (tuberculoma, infiltrative TB, focal TB, cavernous and 
fibrous-cavernous TB, disseminated TB); TB extent (evaluated 
based on the number of lung segments and lobes affected 
by the pathology); the degree of lung tissue destruction (i.e., 
number and size of foci of destruction); bacterial excretion 
(presence, level of); clinical severity of the disease (assessed 
by temperature and other clinical signs of intoxication). 
Correlation and cluster analyzes did not reveal significant 
associations between these TB manifestations and the levels 
of Th1 responses (i.e, the percentages and absolute numbers 
of CD4 lymphocytes producing IFNγ, TNFα, IL2, their various 
combinations, the level of antigen-induced IFNγ production in 
the Quantiferon-TB gold in-tube test) [56, 57]. Thus, it can be 
deduced that in most cases the intensity of Th1 response does 
not affect the post-infection development or non-development 
of the disease, and neither does it influence the course of TB 
disease. It seems that, provided there are no significant defects 
(like HIV-related deficiency of CD4 lymphocytes or mutations 
in IL12 / IFNγ chain genes), the host organism is capable of 
mounting a Th1 response proportionate to the threat, and 
the quantitative characteristics of such response (which differ 
from person to person), do not have a significant effect on the 
outcome of the infection.

This conclusion is in line with the results of studies 
researching the relationship between the vaccine-induced Th1 
response and protection against TB disease. For example, 
Kagina and coauthors evaluated BCG-specific CD4, CD8 
lymphocytes and γδ T-cells producing IFNγ, TNFα, IL2 and 
IL17 in children who received the BCG vaccine at birth [59]. 
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