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MYCOBACTERIUM TUBERCULOSIS: DRUG RESISTANCE, VIRULENCE AND
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In spite of successful measures taken to reduce mortality associated with tuberculosis, this disease is still widely spread.
In some Russian regions the number of patients with tuberculosis is no short of the epidemic level. The long-term use of
antibiotics, changes in the composition of the human microbiota and a few other factors have contributed to the emergence
of drug-resistant and hypervirulent sublineages of Mycobacterium tuberculosis. Insufficient fundamental knowledge of
mechanisms underlying the emergence and evolution of M. tuberculosis clones simultaneously resistant to a wide spectrum
of antibiotics and exhibiting increased virulence complicates the situation and necessitates a new strategy to combat the
disease. The key concepts of this strategy are «superorganisms», «microbiota» and «resistome». The emergence of multidrug-
resistant (MDR) and extensively drug-resistant (XDR) strains should be addressed in the context of the «superorganism»;
among its components are the human body, its microbiota (specifically, the bacteria that affect the immune status), and
M. tuberculosis itself. Clinically studied phenotypes and genotypes of MDR/XDR strains are a result of clonal variability that
M. tuberculosis develops as part of this «superorganism». Therefore, it is important to focus on the development of vaccines,
adjuvants and probiotics with selective immunomodulating and antioxidant properties.
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MYCOBACTERIUM TUBERCULOSIS: NPOBJIEMbIl JIEKAPCTBEHHOW
YCTONHMNBOCTN, BUPYJIEHTHOCTU U NOAXOAbl K UX PELLUEHNIO
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" JlabopaTtopust reHETUKIN MUKPOOPIraHN3MOB, OTAEN FEHETUYECKX OCHOB BUoTexHoNorm, MIHCTUTYT 0bLLel reHeTukn umenHn H. V1. BaBunosa, Mocksa
2 Hay4Ho-vccnenoBatensCKuii LieHTp 6roTtexHonorin aHtnénoTtrkos «BIOAH», Mockea
3 Nabopatopusi BUOCMHTE3A MMMYHOMMOBYNMHOB, Hay4YHO-MCCNefoBaTENbCKNIA MHCTUTYT BakLWH 1 CbIBOPOTOK MMeHM W. . MevHnkoBa, Mockea

HecmMoTpst Ha OOCTUrHYTbIE YCMEX MEPOMPUATUA, HampPaBReHHbIX Ha CHYDKEHWE CMEPTHOCTW OT Tybepkynesa, AaHHOoe
3abofieBaHNE MO MPEXXHEMY KpanHe pachpOCTPaHEHO, a B HEKOTOPbIX pernoHax Poccum YMCneHHOCTb 60MbHbIX JOCTUraeT
riokagarefien, XapakTepHbIX AN YPOBHS anaeMnm. MHOroNETHeE LUMPOKOE MPVIMEHEHME aHTUONOTUKOB, M3MEHEHME CocTaBa
MUKPOBMOTLI YenoBeka 1 psg, Apyrx hakTopoB MPUBENN K MOABAEHNIO NNEKaPCTBEHHOYCTOMHMBBIX 11 BbICOKOBUPYNEHTHbIX
cybnuHun Mycobacterium tuberculosis. HegocTaTouHOCTb YPOBHSA UM obbema dyHAaMEHTasbHbIX 3HaHWN O MexaHn3max
BO3HVKHOBEHMSA 1 (HOPMUPOBaHMS KNOHOB M. tuberculosis, OOHOBPEMEHHO YCTOMYMBBLIX KO MHOMMM aHTUOWOTUKaM W
ob6nafatoLLIX MOBBILLEHHOM MAaTOrEHHOCTBIO, YCNOXHSET NpobnemMy 1 TpebyeT pa3paboTky HOBOW KoHLUEenumn 60opbbbl C
Tybepkynesom. KnrodeBble MOHATUSE 3TOM KOHLIENUMN — «CyNepopraHn3mM», «MMKpobuoTa» 1 «pe3ncToM». BO3HMKHOBEHWE
dopm ¢ MHOXKecTBEHHOM (MJTY) 1 Lunpokon (LLISTY) nekapCTBEHHOM YCTOMHMBOCTLIO CNEAYET PACCMATPUBATL B KOHTEKCTE UX
hopMMPOBaHVA B COCTaBE HEKOTOPOIrO CynepopraHramMa, afieMeHTamMm KOTOPOro ABASOTCSA COBCTBEHHO OPraHn3m YenoBeka,
€ro MMKpobroTa (B TOM HYCE BAUSIOLLAA HA UMMYHHBIV CTaTtyc) 1 M. tuberculosis. KnuHudeckn TecTrpyemble (OeHoTUMbI U
reHoTUMbI WtammoB MJTY/LLITTY hopMmnpyroTCa Ha OCHOBE KITOHAIbHOW M3MeHUMBOCTU M. tuberculosis B «Cynepopranvame».
[MosTomy npu pa3paboTke MPOTUBOTYOEPKYNE3HBIX MPENapaToB CnedyeT obpalliartb 0COb0e BHUMaHME Ha CO3AaHNe BakLUMH,
a0 blOBaHTOB 1 MPOBNOTUKOB C CENEKTUBHBIMY MMYHOMOZYIMPYIOLLMMU 1 @HTVOKCUAAHTHBIMW CBOVICTBAMN.

KntoueBble cnoBa: Ty6epkynes, Mycobacterium tuberculosis, NnekapCTBEHHas yCTONYMBOCTb, aAbloBaHTbl, BaKLHbI,
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In 2017 the Russian government adopted a strategy to prevent
the spread of antimicrobial resistance in the Russian Federation
by 2030. One of the goals set by the strategy is to study
the mechanisms underlying the emergence of antimicrobial
resistance and to develop novel antimicrobial medications,
alternative methods, technologies and means of prevention,
diagnosis and treatment of infectious diseases in humans,
animals and plants.

According to the 2016 report by the World Health
Organization, that year tuberculosis reached the incidence
of 10.4 milion new cases and kiled 1.8 milion people
becoming the leading cause of death associated with infection
[1]. Mycobacterium tuberculosis is the causative agent of
tuberculosis. The emergence and spread of its multidrug-
resistant (MDR) and extensively drug-resistant (XDR) strains are
the central challenges in the battle against this disease [2-4].
Statistically, 4% of new and 21% of previously treated cases
are multidrug-resistant. In Russia these numbers are 22% and
53%, respectively. To survive, mycobacteria can evolve new
mechanisms of resistance in response to any currently known
drug. They are also naturally resistant to antibiotics, being
equipped with a large arsenal of genes and genetic systems
that make up the resistome. Proposed in 2006, the resistome
concept refers to the set of antibiotic resistance determinants,
including resistance genes that are intrinsic to a certain
bacterial strain, organism or ecosystem [5, 6]. The resistome of
M. tuberculosis comprises genes coding for different protein
classes, such as transporters, proteins that modify the targets
or chemical structure of pharmaceutical drugs, transcription
factors involved in stress response, and some others.

Another alarming trend is the emergence of previously
unknown hypervirulent M. tuberculosis sublineages [7-9].
In vitro and in vivo studies carried out in macrophage and
mouse models, respectively, have established an association
between virulence and a genotype the pathogen belongs to
[10]. Increased virulence is mostly observed in the Beijing
genotype (lineage). Its epidemiological significance cannot be
overestimated as it continues to spread globally and tends to
frequently evolve into MDR forms [11, 12]. The Beijing strains are
genetically heterogenous branching off into a few sublineages.
Although the high frequency of increasingly virulent and drug-
resistant forms is generally typical for the entire Beijing family,
it still varies among its sublineages [13, 14]. Moreover, the
clinically significant characteristics of these bacteria can vary
among the strains representing the same sublineage.

Over the past decades, the study of mechanisms underlying
the emergence of MDR/XDR strains of M. tuberculosis, the
discovery of antibiotics capable of killing these strains and the
development of genetically engineered vaccines and adjuvants
to prevent and treat the disease have helped the researchers
to identify a few important problems [15]. We cannot develop
a novel effective drug unless we understand molecular and
genetic mechanisms underlying the emergence and evolution
of multiple drug resistance and virulence.

Drug resistance and development of novel
antituberculosis antibiotics

Bacteria are not limited to acquired drug resistance. They are
also naturally, though not so strongly, resistant to antibiotics.
When M. tuberculosis cells are exposed to an antibacterial
agent, the pathogen activates its transcription factors
that regulate the expression of genes responsible for the
modification of the drug or its target and activation of reverse
transport systems that pump the drug or its derivatives out of

the bacterial cell. Genes underpinning the mechanisms that
ensure natural resistance to antibiotics are targeted by a variety
of biological factors including antibiotics, which affects their
expression and therefore reduces susceptibility to drugs.

The use of antibiotics for treating co-infections in patients
with tuberculosis or their absorption with food can contribute to
increasing drug resistance of M. tuberculosis.

In 2015 there were over 580,000 patients infected with
MDR and XDR tuberculosis strains worldwide. Their dramatic
spread was driven by the long-term use of the same old
medications. It was not until recently that bedaquiline, the first
new antituberculosis drug in 40 years, was introduced into
clinical practice [16].

In this light, development of novel antituberculous
drugs is becoming a task of paramount importance. These
pharmaceutical agents are expected to satisfy a number
of requirements, such as high antimicrobial activity against
both drug-sensitive and MDR strains of M. tuberculosis and
excellent specificity to a new biological target. At present,
development of novel antituberculosis drugs that have a
potential to overcome the phenomenon of drug resistance and/
or to reduce the length of treatment is carried out by the leading
pharmaceutical companies and research groups all over the
world, including Lilly TB Drug Discovery Initiative, GSK, Roche,
Sanofi, TB Alliance, Colorado State University, and some others
(http://www.newtbdrugs.org).

In Russia, research in this field was stimulated by the
Pharma-2020 federal program. For example, Vavilov Institute
of General Genetics, Moscow, has been conducting a series of
preclinical trials in collaboration with medicinal chemists from
state-funded and commercial research institutions, such as
Postovsky Institute of Organic Synthesis, the Ural Branch of
RAS; Gause Institute of New Antibiotics; Novosibirsk Institute
of Organic Chemistry, the Siberian Branch of RAS; Zelinsky
Institute of Organic Chemistry; BIOAN Research Center, and
New Science Technologies Ltd. The tested drugs belong
to new classes of medical compounds, such as derivatives
of usnic acid [17], substituted azolo(1,2,4,5)tetrazines [18],
aminopyridines and aminopyrimidines[19], and aminopurine
derivatives [20].

The advent of the postgenomic era witnessed two
approaches to the discovery of novel antituberculosis drugs:
target-to-drug and drug-to-target [21-23].

Unfortunately, the first approach did not fully live up to
the expectations. Many drug candidates with good inhibiting
properties exhibited against the target enzyme in vitro either
were not active against M. tuberculosis in vitro due to the
low permeability of the bacterial cell wall or were ineffective in
in vivo models because the target was no longer vitally
important for the bacteria under those conditions [22, 24].

Yet there are a few successful experiments worth
mentioning. In one of them, a compound termed BDM31343
was identified capable of inhibiting EtHR, the EthA repressor
which, in turn, activated ethionamide [25]. This compound was
shown to increase susceptibility of mycobacteria to ethionamide
enhancing its effect threefold in mouse models [26].

Because the target-to-drug approach proved to be less
than effective, researchers turned to a more traditional drug-to-
target search strategy based on whole-cell screening [24]. All
drugs currently used to treat tuberculosis, including bedaquiline,
pretomanid, delamanid, Q203, SQ-109, and BTZ043, were
discovered using this approach [27].

The drug-to-target search strategy often involves high-
throughput screening against M. tuberculosis H37Rv cultures
and related M. bovis BCG and M. smegmatis model strains
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[24, 28]. The libraries of chemical compounds used in such
experiments are enormously huge. For example, GSK
researchers consecutively screened a total of 2 million
compounds against M. bovis BCG and M. tuberculosis H37Rv
to select 7 low-toxic drug candidates exhibiting high activity
and capable of diffusing through the cell membrane [29].

The drug-to-target approach entails the need for whole-
genome sequencing of antibiotic-resistant mutants in order
to identify potential biotargets and for further research aimed
at confirming the activity of selected drug candidates against
those targets [24].

The discovery of drugs capable of kiling persistent forms
of M. tuberculosis remains a global challenge. So far,
pyrazinamide appears to be the most effective antibiotic against
persistent M. tuberculosis [30]. Resistance to pyrazinamide
can significantly worsen clinical prognosis, especially in patients
with MDR tuberculosis [31, 32].

Development of antituberculosis vaccines

Although vaccination against tuberculosis is advocated
everywhere, the incidence of the disease remains abnormally
high. This can be explained by the low efficacy of the BCG
vaccine used for global immunization, which varies between
0% and 80% depending on the individual’s age, immune status,
area of residence, etc. [33]. Among other reasons reducing the
efficacy of the vaccine is the genetic diversity of the pathogen.
It is hypothesized that resistance to vaccination demonstrated
by the ubiquitous Beijing strains may explain their evolutional
success [11]. Considering that, creation of novel vaccines
against tuberculosis should be a top-priority task.

Development of such vaccines has taken two paths. The
first is to use the attenuated pathogen itself. For this purpose,
deletion mutants of M. tuberculosis are being engineered. Among
the knocked-out genes are those coding for virulence factors,
such as Mce (mammalian cell entry) proteins facilitating pathogen
invasion; PPE proteins; proteins participating in lipid synthesis;
sigma factors; two-component systems, and some others.

The second approach is to compose a subunit vaccine
containing genetically engineered pathogen antigens [34, 35].
Advantageously, such vaccines are highly specific, have a low
allergenic potential, are easy to fabricate, cost-effective, and
convenient to store and transport [36].

Candidate proteins for next-generation vaccines include
secretory proteins of the Ag85 complex that interact with
T cells; TB10.4 (rv0288); Hsp65; PE and PPE proteins. The
greatest promise is held by the protein components of the
ESAT6 and CFP secretion systems [36].

However, in spite of the considerable interest in this
field, genetically engineered vaccines did not live up to the
expectations. The main drawback of such vaccines is their low
immunogenicity.

The key challenge in the development of genetically
engineered vaccines is the selection of optimal antigens [36].
Here, strong antigenic potential is exhibited by the structural
elements conferring pathogenicity, of which M. tuberculosis
has over 300; some of them have already been segregated
to design a subunit vaccine [37]. Many of these genes
typically have a single nucleotide polymorphism resulting in
an amino acid substitution, which affects the structure of
the protein modulating its antigenic activity. At present, the
intraspecies diversity of M. tuberculosis is unfairly overlooked
in the production of genetically engineered vaccines, which are
usually based on a sequence of the standard laboratory strain
H37Rv. If cultured for too long, the M. bovis strain used for BCG
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production can develop mutations (a natural consequence of
its microevolution) reducing the efficacy of the vaccine [38]. It is
possible that the antigenic activity of proteins is not identical in
different M. tuberculosis strains.

Another promising area of research is related to the
development of a candidate mucosal vaccine against
tuberculosis that induces the sustained local mucosal immune
response. The importance of the local immunity against
tuberculosis has been demonstrated in a number of works. It
has been shown that intranasal administration of protective IgA,
pretreatment of virulent M. tuberculosis with protective IgA and
intranasal administration of M. bovis BCG trigger a sustained
immune response to M. tuberculosis infection. [39-42]. The
mucosal vaccine administered alone or in combination with
its subcutaneous form could offer a solution to the problems
accompanying BCG vaccination.

It should be noted, though, that so far none of the mentioned
vaccines have been introduced into clinical practice. Again,
the drawback of such vaccines is their low immunogenicity
necessitating the use of adjuvants.

Prospects for the development of antituberculosis
vaccine adjuvants based on probiotic strains

An adjuvant is a compound with non-specific activity that
enhances the immune response to antigens administered
in combination with adjuvants [43]. Of all commonly used
adjuvants, aluminum hydroxide and aluminum phosphate are
the most remarkable [44]. However, the boosting effect of
these compounds is not always sufficient. Other substances
that can serve as adjuvants include synthetic polyoxidonium
and chitosan, a naturally obtained polysaccharide. Bacterial
cell components are also tested for their adjuvant properties,
specifically those that contain pathogen-associated molecular
patterns (PAMP) triggering the immune response. A few
works have already described the adjuvant effects of lactic
acid bacteria [45], bacterial cell wall components [46, 47], the
fibronectin-binding protein 1 of Streptococcus pyogenes [48],
surface flagellins [49], etc.

Some strains of probiotic bacteria, bifidobacteria in particular,
can trigger production of Th17 and Th1 cytokines [50] that
play an important role in the induction of the mucosal immune
response against tuberculosis [39]. Administered intranasally,
probiotics can exert their vaccine-boosting effect, inducing
protective immunity against virulent strains of M. tuberculosis.
Commensal bifidobacteria and lactobacilli are capable of
stimulating the mechanisms of protective immunity, regulating
the secretion of both pro- and anti-inflammatory cytokines.
As a rule, in vitro studies of the immunomodulating activity of
bacterial strains employ intestinal cell lines (Caco-2, HT-29)
or immunocytes (EC-6, THP-1). Similar in vivo experiments
are carried out in lab animals (healthy or with compromised
immunity, gnotobiotic or those with experimentally induced
infections or non-infectious pathologies) [51, 52].

It should be noted that different strains of bifidobacteria
and lactobacilli, as well as their components, have different
immunomodulating effects in terms of intensity [53-55].
Lactobacilli and bifidobacteria have already demonstrated
their adjuvant effects in the vaccines against viruses [56,
57], streptococci [58], and allergies [48, 59]. Intranasal
lactobacilli boost local mucosal immunity and modulate
systemic mechanisms of the immune defense, increasing
resistance to the respiratory syncytial [56, 57, 60] and influenza
viruses. These findings allow us to conclude that intranasally
administered probiotics can act as adjuvants to a vaccine,
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Mycobacterium tuberculosis

(the hypothetical ancestral)

7.000 years ago

Emergence of the Beijing-ancestral lineage

on the territory of North China

1.000 years ago

Formation of the Beijing-modern sublineage in China

The Beijing-modern

sublineage (modern)

The spread of the Beijing-ancestral in South Africa following
migration from China in the late 18"- early 19" century

100 years ago

The Beijing-modern sublineage appears on the territory of Russia,

Globally observed changes in the immune status of the world
population resulting from HIV, chronic conditions and stress

brought there by the migrants

50 years ago (the era of antibiotics)

The BO/W sublineage branches off from the Beijing-modern sublineage

in the Russian Federation

Present day

Fig. 1. Evolution of the Beijing lineages. Wide use of antibiotics in the recent decades has provided selective advantage to the BO/W-14 strain characterized by a high

level of drug resistance

effectively inducing the protective immune response against
M. tuberculosis in the mucosa.

CONCLUSION

Throughout their history, humans have been colonized by
latent and active M. tuberculosis [61]. The Beijing strains that
emerged on the territory of modern China about 7, 000 years
ago and have widely spread across the world since then are a
live example of the ongoing evolution of the pathogen that still
forms new sublineages, such as BO/W-148 (Fig. 1) [62, 63].

It is known that susceptibility to tuberculosis is affected by
the level of gene expression in T cells [64]. In this light, the
problem of drug resistance and increased virulence and the
discovery of a new generation of antituberculosis drugs should
be addressed in the context of the “superorganism” concept.
The antibiotic-based treatment of tuberculosis affects not only
the pathogen, but the host as well, altering the microbiota
composition and, therefore, compromising the immunity,
which is known to be directly affected by the gut microbiota.
Antibiotics interfere with the functions of the central and
peripheral nervous systems of the host; other systems and
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