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MYCOBACTERIUM TUBERCULOSIS: ПРОБЛЕМЫ ЛЕКАРСТВЕННОЙ 
УСТОЙЧИВОСТИ, ВИРУЛЕНТНОСТИ И ПОДХОДЫ К ИХ РЕШЕНИЮ

Несмотря на достигнутые успехи мероприятий, направленных на снижение смертности от туберкулеза, данное 
заболевание по прежнему крайне распространено, а в некоторых регионах России численность больных достигает 
показателей, характерных для уровня эпидемии. Многолетнее широкое применение антибиотиков, изменение состава 
микробиоты человека и ряд других факторов привели к появлению лекарственноустойчивых и высоковирулентных 
сублиний Mycobacterium tuberculosis. Недостаточность уровня и объема фундаментальных знаний о механизмах 
возникновения и формирования клонов M. tuberculosis, одновременно устойчивых ко многим антибиотикам и 
обладающих повышенной патогенностью, усложняет проблему и требует разработки новой концепции борьбы с 
туберкулезом. Ключевые понятия этой концепции — «суперорганизм», «микробиота» и «резистом». Возникновение 
форм с множественной (МЛУ) и широкой (ШЛУ) лекарственной устойчивостью следует рассматривать в контексте их 
формирования в составе некоторого суперорганизма, элементами которого являются собственно организм человека, 
его микробиота (в том числе влияющая на иммунный статус) и M. tuberculosis. Клинически тестируемые фенотипы и 
генотипы штаммов МЛУ/ШЛУ формируются на основе клональной изменчивости M. tuberculosis в «суперорганизме». 
Поэтому при разработке противотуберкулезных препаратов следует обращать особое внимание на создание вакцин, 
адъювантов и пробиотиков с селективными иммуномодулирующими и антиоксидантными свойствами.
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MYCOBACTERIUM TUBERCULOSIS: DRUG RESISTANCE, VIRULENCE AND 
POSSIBLE SOLUTIONS 

In spite of successful measures taken to reduce mortality associated with tuberculosis, this disease is still widely spread. 
In some Russian regions the number of patients with tuberculosis is no short of the epidemic level. The long-term use of 
antibiotics, changes in the composition of the human microbiota and a few other factors have contributed to the emergence 
of drug-resistant and hypervirulent sublineages of Mycobacterium tuberculosis. Insufficient fundamental knowledge of 
mechanisms underlying the emergence and evolution of M. tuberculosis clones simultaneously resistant to a wide spectrum 
of antibiotics and exhibiting increased virulence complicates the situation and necessitates a new strategy to combat the 
disease. The key concepts of this strategy are «superorganism», «microbiota» and «resistome». The emergence of multidrug-
resistant (MDR) and extensively drug-resistant (XDR) strains should be addressed in the context of the «superorganism»; 
among its components are the human body, its microbiota (specifically, the bacteria that affect the immune status), and 
M. tuberculosis itself. Clinically studied phenotypes and genotypes of MDR/XDR strains are a result of clonal variability that 
M. tuberculosis develops as part of this «superorganism». Therefore, it is important to focus on the development of vaccines, 
adjuvants and probiotics with selective immunomodulating and antioxidant properties. 
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In 2017 the Russian government adopted a strategy to prevent 
the spread of antimicrobial resistance in the Russian Federation 
by 2030. One of the goals set by the strategy is to study 
the mechanisms underlying the emergence of antimicrobial 
resistance and to develop novel antimicrobial medications, 
alternative methods, technologies and means of prevention, 
diagnosis and treatment of infectious diseases in humans, 
animals and plants.

According to the 2016 report by the World Health 
Organization, that year tuberculosis reached the incidence 
of 10.4 million new cases and killed 1.8 million people 
becoming the leading cause of death associated with infection 
[1]. Mycobacterium tuberculosis is the causative agent of 
tuberculosis. The emergence and spread of its multidrug-
resistant (MDR) and extensively drug-resistant (XDR) strains are 
the central challenges in the battle against this disease [2–4]. 
Statistically, 4% of new and 21% of previously treated cases 
are multidrug-resistant. In Russia these numbers are 22% and 
53%, respectively. To survive, mycobacteria can evolve new 
mechanisms of resistance in response to any currently known 
drug. They are also naturally resistant to antibiotics, being 
equipped with a large arsenal of genes and genetic systems 
that make up the resistome. Proposed in 2006, the resistome 
concept refers to the set of antibiotic resistance determinants, 
including resistance genes that are intrinsic to a certain 
bacterial strain, organism or ecosystem [5, 6]. The resistome of 
M. tuberculosis comprises genes coding for different protein 
classes, such as transporters, proteins that modify the targets 
or chemical structure of pharmaceutical drugs, transcription 
factors involved in stress response, and some others.

Another alarming trend is the emergence of previously 
unknown hypervirulent M. tuberculosis sublineages [7–9].
In vitro and in vivo studies carried out in macrophage and 
mouse models, respectively, have established an association 
between virulence and a genotype the pathogen belongs to 
[10]. Increased virulence is mostly observed in the Beijing 
genotype (lineage). Its epidemiological significance cannot be 
overestimated as it continues to spread globally and tends to 
frequently evolve into MDR forms [11, 12]. The Beijing strains are 
genetically heterogenous branching off into a few sublineages. 
Although the high frequency of increasingly virulent and drug-
resistant forms is generally typical for the entire Beijing family, 
it still varies among its sublineages [13, 14]. Moreover, the 
clinically significant characteristics of these bacteria can vary 
among the strains representing the same sublineage.

Over the past decades, the study of mechanisms underlying 
the emergence of MDR/XDR strains of M. tuberculosis, the 
discovery of antibiotics capable of killing these strains and the 
development of genetically engineered vaccines and adjuvants 
to prevent and treat the disease have helped the researchers 
to identify a few important problems [15]. We cannot develop 
a novel effective drug unless we understand molecular and 
genetic mechanisms underlying the emergence and evolution 
of multiple drug resistance and virulence.

Drug resistance and development of novel 
antituberculosis antibiotics 

Bacteria are not limited to acquired drug resistance. They are 
also naturally, though not so strongly, resistant to antibiotics. 
When M. tuberculosis cells are exposed to an antibacterial 
agent, the pathogen activates its transcription factors 
that regulate the expression of genes responsible for the 
modification of the drug or its target and activation of reverse 
transport systems that pump the drug or its derivatives out of 

the bacterial cell. Genes underpinning the mechanisms that 
ensure natural resistance to antibiotics are targeted by a variety 
of biological factors including antibiotics, which affects their 
expression and therefore reduces susceptibility to drugs.

The use of antibiotics for treating co-infections in patients 
with tuberculosis or their absorption with food can contribute to 
increasing drug resistance of M. tuberculosis.

In 2015 there were over 580,000 patients infected with 
MDR and XDR tuberculosis strains worldwide. Their dramatic 
spread was driven by the long-term use of the same old 
medications. It was not until recently that bedaquiline, the first 
new antituberculosis drug in 40 years, was introduced into 
clinical practice [16].

In this light, development of novel antituberculous 
drugs is becoming a task of paramount importance. These 
pharmaceutical agents are expected to satisfy a number 
of requirements, such as high antimicrobial activity against 
both drug-sensitive and MDR strains of M. tuberculosis and 
excellent specificity to a new biological target. At present, 
development of novel antituberculosis drugs that have a 
potential to overcome the phenomenon of drug resistance and/
or to reduce the length of treatment is carried out by the leading 
pharmaceutical companies and research groups all over the 
world, including Lilly TB Drug Discovery Initiative, GSK, Roche, 
Sanofi, TB Alliance, Colorado State University, and some others 
(http://www.newtbdrugs.org).

In Russia, research in this field was stimulated by the 
Pharma-2020 federal program. For example, Vavilov Institute 
of General Genetics, Moscow, has been conducting a series of 
preclinical trials in collaboration with medicinal chemists from 
state-funded and commercial research institutions, such as 
Postovsky Institute of Organic Synthesis, the Ural Branch of 
RAS; Gause Institute of New Antibiotics; Novosibirsk Institute 
of Organic Chemistry, the Siberian Branch of RAS; Zelinsky 
Institute of Organic Chemistry; BIOAN Research Center, and 
New Science Technologies Ltd. The tested drugs belong 
to new classes of medical compounds, such as derivatives 
of usnic acid [17], substituted azolo(1,2,4,5)tetrazines [18], 
aminopyridines and aminopyrimidines[19], and aminopurine 
derivatives [20].

The advent of the postgenomic era witnessed two 
approaches to the discovery of novel antituberculosis drugs: 
target-to-drug and drug-to-target [21–23].

Unfortunately, the first approach did not fully live up to 
the expectations. Many drug candidates with good inhibiting 
properties exhibited against the target enzyme in vitro either 
were not active against M. tuberculosis in vitro due to the 
low permeability of the bacterial cell wall or were ineffective in 
in vivo models because the target was no longer vitally
important for the bacteria under those conditions [22, 24].

Yet there are a few successful experiments worth 
mentioning. In one of them, a compound termed BDM31343 
was identified capable of inhibiting EtHR, the EthA repressor 
which, in turn, activated ethionamide [25]. This compound was 
shown to increase susceptibility of mycobacteria to ethionamide 
enhancing its effect threefold in mouse models [26].

Because the target-to-drug approach proved to be less 
than effective, researchers turned to a more traditional drug-to-
target search strategy based on whole-cell screening [24]. All 
drugs currently used to treat tuberculosis, including bedaquiline, 
pretomanid, delamanid, Q203, SQ-109, and BTZ043, were 
discovered using this approach [27].

The drug-to-target search strategy often involves high-
throughput screening against M. tuberculosis H37Rv cultures 
and related M. bovis BCG and M. smegmatis model strains 
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[24, 28]. The libraries of chemical compounds used in such 
experiments are enormously huge. For example, GSK 
researchers consecutively screened a total of 2 million 
compounds against M. bovis BCG and M. tuberculosis H37Rv 
to select 7 low-toxic drug candidates exhibiting high activity 
and capable of diffusing through the cell membrane [29].

The drug-to-target approach entails the need for whole-
genome sequencing of antibiotic-resistant mutants in order 
to identify potential biotargets and for further research aimed 
at confirming the activity of selected drug candidates against 
those targets [24].

The discovery of drugs capable of killing persistent forms 
of M. tuberculosis remains a global challenge. So far, 
pyrazinamide appears to be the most effective antibiotic against 
persistent M. tuberculosis [30]. Resistance to pyrazinamide 
can significantly worsen clinical prognosis, especially in patients 
with MDR tuberculosis [31, 32]. 

Development of antituberculosis vaccines 

Although vaccination against tuberculosis is advocated 
everywhere, the incidence of the disease remains abnormally 
high. This can be explained by the low efficacy of the BCG 
vaccine used for global immunization, which varies between 
0% and 80% depending on the individual’s age, immune status, 
area of residence, etc. [33].  Among other reasons reducing the 
efficacy of the vaccine is the genetic diversity of the pathogen. 
It is hypothesized that resistance to vaccination demonstrated 
by the ubiquitous Beijing strains may explain their evolutional 
success [11]. Considering that, creation of novel vaccines 
against tuberculosis should be a top-priority task.

Development of such vaccines has taken two paths. The 
first is to use the attenuated pathogen itself. For this purpose, 
deletion mutants of M. tuberculosis are being engineered. Among 
the knocked-out genes are those coding for virulence factors, 
such as Mce (mammalian cell entry) proteins facilitating pathogen 
invasion; PPE proteins; proteins participating in lipid synthesis; 
sigma factors; two-component systems, and some others. 

The second approach is to compose a subunit vaccine 
containing genetically engineered pathogen antigens [34, 35]. 
Advantageously, such vaccines are highly specific, have a low 
allergenic potential, are easy to fabricate, cost-effective, and 
convenient to store and transport [36]. 

Candidate proteins for next-generation vaccines include 
secretory proteins of the Ag85 complex that interact with 
T cells; TB10.4 (rv0288); Hsp65; PE and PPE proteins. The 
greatest promise is held by the protein components of the 
ESAT6 and CFP secretion systems [36].

However, in spite of the considerable interest in this 
field, genetically engineered vaccines did not live up to the 
expectations. The main drawback of such vaccines is their low 
immunogenicity.

The key challenge in the development of genetically 
engineered vaccines is the selection of optimal antigens [36]. 
Here, strong antigenic potential is exhibited by the structural 
elements conferring pathogenicity, of which M. tuberculosis 
has over 300; some of them have already been segregated 
to design a subunit vaccine [37]. Many of these genes 
typically have a single nucleotide polymorphism resulting in 
an amino acid substitution, which affects the structure of 
the protein modulating its antigenic activity. At present, the 
intraspecies diversity of M. tuberculosis is unfairly overlooked 
in the production of genetically engineered vaccines, which are 
usually based on a sequence of the standard laboratory strain 
H37Rv. If cultured for too long, the M. bovis strain used for BCG 

production can develop mutations (a natural consequence of 
its microevolution) reducing the efficacy of the vaccine [38]. It is 
possible that the antigenic activity of proteins is not identical in 
different M. tuberculosis strains. 

Another promising area of research is related to the 
development of a candidate mucosal vaccine against 
tuberculosis that induces the sustained local mucosal immune 
response. The importance of the local immunity against 
tuberculosis has been demonstrated in a number of works. It 
has been shown that intranasal administration of protective IgA, 
pretreatment of virulent M. tuberculosis with protective IgA and 
intranasal administration of M. bovis BCG trigger a sustained 
immune response to M. tuberculosis infection. [39–42]. The 
mucosal vaccine administered alone or in combination with 
its subcutaneous form could offer a solution to the problems 
accompanying BCG vaccination. 

It should be noted, though, that so far none of the mentioned 
vaccines have been introduced into clinical practice. Again, 
the drawback of such vaccines is their low immunogenicity 
necessitating the use of adjuvants. 

Prospects for the development of antituberculosis 
vaccine adjuvants based on probiotic strains 

An adjuvant is a compound with non-specific activity that 
enhances the immune response to antigens administered 
in combination with adjuvants [43]. Of all commonly used 
adjuvants, aluminum hydroxide and aluminum phosphate are 
the most remarkable [44]. However, the boosting effect of 
these compounds is not always sufficient. Other substances 
that can serve as adjuvants include synthetic polyoxidonium 
and chitosan, a naturally obtained polysaccharide. Bacterial 
cell components are also tested for their adjuvant properties, 
specifically those that contain pathogen-associated molecular 
patterns (PAMP) triggering the immune response. A few 
works have already described the adjuvant effects of lactic 
acid bacteria [45], bacterial cell wall components [46, 47], the 
fibronectin-binding protein 1 of Streptococcus pyogenes [48], 
surface flagellins [49], etc.

Some strains of probiotic bacteria, bifidobacteria in particular, 
can trigger production of Th17 and Th1 cytokines [50] that 
play an important role in the induction of the mucosal immune 
response against tuberculosis [39]. Administered intranasally, 
probiotics can exert their vaccine-boosting effect, inducing 
protective immunity against virulent strains of M. tuberculosis. 
Commensal bifidobacteria and lactobacilli are capable of 
stimulating the mechanisms of protective immunity, regulating 
the secretion of both pro- and anti-inflammatory cytokines. 
As a rule, in vitro studies of the immunomodulating activity of 
bacterial strains employ intestinal cell lines (Caco-2, HT-29) 
or immunocytes (EC-6, THP-1). Similar in vivo experiments 
are carried out in lab animals (healthy or with compromised 
immunity, gnotobiotic or those with experimentally induced 
infections or non-infectious pathologies) [51, 52].

It should be noted that different strains of bifidobacteria 
and lactobacilli, as well as their components, have different 
immunomodulating effects in terms of intensity [53–55]. 
Lactobacilli and bifidobacteria have already demonstrated 
their adjuvant effects in the vaccines against viruses [56, 
57], streptococci [58], and allergies [48, 59]. Intranasal 
lactobacilli boost local mucosal immunity and modulate 
systemic mechanisms of the immune defense, increasing 
resistance to the respiratory syncytial [56, 57, 60] and influenza 
viruses. These findings allow us to conclude that intranasally 
administered probiotics can act as adjuvants to a vaccine, 
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effectively inducing the protective immune response against 
M. tuberculosis in the mucosa.

CONCLUSION

Throughout their history, humans have been colonized by 
latent and active M. tuberculosis [61]. The Beijing strains that 
emerged on the territory of modern China about 7, 000 years 
ago and have widely spread across the world since then are a 
live example of the ongoing evolution of the pathogen that still 
forms new sublineages, such as B0/W-148 (Fig. 1) [62, 63]. 

It is known that susceptibility to tuberculosis is affected by 
the level of gene expression in T cells [64]. In this light, the 
problem of drug resistance and increased virulence and the 
discovery of a new generation of antituberculosis drugs should 
be addressed in the context of the “superorganism” concept. 
The antibiotic-based treatment of tuberculosis affects not only 
the pathogen, but the host as well, altering the microbiota 
composition and, therefore, compromising the immunity, 
which is known to be directly affected by the gut microbiota. 
Antibiotics interfere with the functions of the central and 
peripheral nervous systems of the host; other systems and 

organs may also be affected. The unregulated use of antibiotics 
in agriculture leads to the formation of cross-resistance to drugs 
in bacteria. Besides, antibiotic-based therapies can “wake” the 
latent tuberculosis infection.

To sum up, the major factor that has been stimulating 
the positive selection of drug-resistant virulent forms of M. 
tuberculosis over the past 60 years is the uncontrolled use of 
antibiotics. Other factors include the wide spread of immunity-
compromising diseases, such as HIV, type 2 diabetes mellitus, 
hepatitis B, etc. Diet and migration stimulated by globalization 
lead to the shifts in the gut microbiota composition, which in turn 
make their contribution to the problem. The genetic diversity 
of M. tuberculosis shaped by single nucleotide polymorphisms 
in the genes responsible for virulence, natural resistance to 
drugs and persistence, IS elements and possibly СRISPR-cas 
systems also affect the adaptation of the pathogen to the host 
[65, 66].

Advances in epidemiology, molecular genetics, comparative 
genomics, proteomics and systemic biology have improved 
our understanding of the multifactorial nature of tuberculosis 
revealing the need for a tailored approach to the treatment of 
this disease.

Fig. 1. Evolution of the Beijing lineages. Wide use of antibiotics in the recent decades has provided selective advantage to the B0/W-14 strain characterized by a high 
level of drug resistance
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brought there by the migrants

The spread of the Beijing-ancestral in South Africa following 
migration from China in the late 18th- early 19th century

The B0/W sublineage branches off from the Beijing-modern sublineage 
in the Russian Federation

Globally observed changes in the immune status of the world 
population resulting from HIV, chronic conditions and stress
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