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DEVELOPMENT OF LIPOSOMAL DRUG FORMULATIONS:
QUALITY ATTRIBUTES AND METHODS FOR QUALITY CONTROL

Melnikova EV, Goryachev DV, Chaplenko AA &, Vodyakova MA, Sayfutdinova AR, Merkulov VA
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of the Ministry of Health of the Russian Federation, Moscow

The use of nanostructured components in drug manufacturing and, more specifically, targeted drug delivery has recently
become a major pharmacy trend. Nanodrugs encompass a wide range of pharmaceutical agents containing dendrimers,
nanocrystals, micelles, liposomes, and polymer nanoparticles. Liposomes are the most well-studied nanoparticles and effective
drug carriers. However, the more complex their structure is, the more process controls are needed and the more quality
attributes have to be monitored, including the chemical properties of the liposomal fraction such as the shape, size and charge
of the nanoparticle, conjugation efficacy, and distribution of the active ingredient. We believe that quality control of key liposome
characteristics can be carried out using dynamic and laser light scattering coupled with electrophoresis, differential scanning
calorimetry, cryo-electron microscopy, nuclear magnetic resonance, laser diffraction analysis, and gel filtration chromatography.
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PA3SPABOTKA JIMMOCOMAJIbHbIX ®OPM JIEKAPCTBEHHbIX NPEMNAPATOB:
METO[bl OLUEHKN N NMOKAS3ATEJIN KAHECTBA

E. B. MenbHuvkoBa, . B. Topsyes, A. A. Hannerko =, M. A. Bogskosa, A. P. CaidytanHosa, B. A. Mepkynos

depepanbHoe rocy1apCTBEHHOE BIOIKETHOE YUYpexXaeHMe «Hay4HbIN LEHTP SKCNepTn3bl CPEACTB MEANLIMHCKOrO NPUMEHEHNS»

MuHUCTEpCTBa 3apaBooxpaHeHns Poccuinckoin ®epepaummn, Mocksa
O,EI,HI/IM M3 TpeHaoB CbapMaLl,I/II/I Ha CeI'O,EI,HﬂLIJHI/II7I [OeHb ABNAETCA NPYIMeHEHe HaHOCTPYKTYPHbIX KOMMOHEHTOB OJ1A NMPon3BOACTBA
neKapcTs, B HaCTHOCTU OJiA Hal'lpaBJ'IeHHOI7I OOCTaBKW NIeKapCTBEeHHbIX CPeACTB B 3a4aHHYO obnacTb OopraHn3mMa, opraHa nnn
knetkn. K HaHonpenapartaM aBTOPbl OTHOCAT CPeaCTBa, cogep kaillye ageHaprMepbl, HAHOKpUCTaibl, MULENIIbI, JIMMOCOMbI,
a TakXke nonrMMepHble HaHO4YaCTULbI. B nacTosiee BpeMyA IMNOCOMbl — OAHN U3 Hanbonee mnccnenoBaHHbIX HAHOYaCTUIL,
KOTOpPblE paccMaTpmBarOT KakK COBPEMEHHbIE U ScbdjeKTl/lBHble cpenctea OOCTaBKM Pas3fidHbIX MpenapaTos. O,D,HaKO
yBenmdeHne CroXXHOCTW CTPYKTYPbI rnpenapara HEM3bEXKHO NpPVBOONT K YBENMNHEHNIO HCa KPUTUHECKIX TOYEK MOOon3BOAOCTBA,
a TakKe K paclupeHnio Crnncka rnokasarenen kadecTtsa. Hapﬂﬂy C KJlaCCn4eCKMI rnokasatesidiMn Ka4eCTBa aBTOPbI CHATAOT
HeOGXO,D,I/IMbIM OueHVBaTb TakXke dJI/ISI/IKO—XI/IMI/I‘—IeCKI/Ie CBOWCTBA JIMMOCOMHOM q)paKLl,I/IVI: CbOpMy, pasmMep 1 3ap4n HacTul,
3CbeeKTI/IBHOCTb KOHBbIOraumm MapKepoB; PaBHOMEPHOCTb pacnpeneneHna rEl,GI?ICTBerI_I_I,el'O BellecTBa. Mbl monaraem, 4To
017 KOHTPONSA KNKOYEBbIX MapaMeTooB JIMMOCOM u,enecooGpasHo MCnoNb30BaTh AMHaAMHYECKOe 1 a3epHOe CBeTopacceaHe
B COYeTaHNN C sneKTpocbopesoM, ,u,mdoqaepeHumaanyro CKaHVPYIOLLIYHO KalIlOPUMETPWIO, KPMOPACLLENAOLLYO SNEKTPOHHYO
MUKOPOCKOMUIO, ﬂ,D,eprII?I MarHUTHbIV [0PE30OHAHC, Na3epHyto ,D,I/chpaKLl,I/er 7 I'GJ'Ib-dJI/U'IpraLI,I/IIO.
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Some of the major current challenges before the its absorption, increase stability, etc. Another case are drugs

pharmaceutical industry are regulation of all pharmacokinetic
parameters of a drug (absorption, distribution, clearance and
biotransformation), ensuring its safety and selective action on
target organs and other targets, minimization of undesirable
reactions and side effects. Using nanostructured components
in general and to deliver drugs to a given body part, organ or
cell in particular is one of the trends that sees development
today. Russian legislation does not describe the concepts of
“nanopreparations” or “nanodrugs”; in reality, all drugs that
are nanoparticles or contain them are considered to be such.
This definition mainly applies to the drugs based on liposomes
and micelles, where nanostructures enable transportation of
the active pharmaceutical ingredient inside the body, prolong
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considered to be nanostructured due to the physicochemical
characteristics of their active ingredients, an example of which
are antianemic iron preparations that may contain iron (lll) atoms
stabilized by a carbohydrate complex, which defines their
nanocolloidal structure. Currently, we are developing quality
assessment and research guidelines applicable to drugs based
on liposomes and micelles, as well as containing nanoparticles.
Features of the nanodrugs' compositions define the
individual approaches to assessing their quality. For example,
quality of liposomal preparations largely depends on their
individual specific attributes (size of nanoparticles, surface
morphology, surface charge), which can affect the following
pharmacokinetic and pharmacodynamic properties in vivo:



MHEHVE | HAHOMEOVLVHA

- rate of release of the active ingredient from liposomes,
a factor that has an effect on pharmacokinetics (PK) and
pharmacodynamics (PD) and, consequently, drug's safety
profile and efficacy;

« bioavailability of the active pharmaceutical ingredient in
liposome, its biotransformation and clearance.

PK of the encapsulated active ingredient depends on that
of the carrier, which is determined by the physicochemical
properties of the nanoparticle material; interactions between
the nanoparticle's components, active ingredient and biological
environment (body) should also be taken into account.

We define nanodrugs as drugs that contain dendrimers,
nanocrystals, micelles, liposomes and polymeric nanoparticles.
Currently, liposome is one of the best-studied nanoparticles
among those considered as effective carriers for various
drugs. In the recent years, global pharmaceutical industry has
developed and released over 20 liposomal drugs primarily
used to treat cancer (Dauno Xome (Gilead, NeXstar), Doxil
(Alza, Sequus), Couloux (Schering-Plow), Muocet (Elan, TLS))
and fungal infections (AmBisome, ABELSET (Gilead, NeXstar))
[1]. Specific capabilities related to transportation, translocation
through histohematogenous barriers and cell membranes, as
well as metabolic transformations, provide liposome-based
drugs with unique properties that improve their PK.

This article summarizes and analyzes the data describing
the use of various types of liposomes for drug delivery and
defines the specifics of the liposome-based nanodrugs quality
assessment.

Varieties of liposomes and their use
by pharmaceutical industry

Liposomes are vesicles with a lipid bilayer built of amphiphilic
molecules enclosing their contents. Recently, liposomes have
evolved from a simple model that mimics cell membranes
into an object of active research and practical application [2].
In the context of drug delivery, liposomes enable selective
accumulation of the active ingredient in pathological lesions
(tumors, inflamed tissues) due to their passive targeting ability.
This ability is the results of the difference in distance between
capillary cells in lesions/tumors and normal tissue: the former,
which is 210 to 1000 nm, is significantly greater than the latter,
which is approximately 40 nm. Thus, liposomes less than 200
nm in size cannot escape the bloodstream anywhere except
the lesions (with the exception of the brain, where tumors
typically have pores of 7-100 nm [3, 4]), and the active
pharmaceutical ingredient, which can be toxic, is unlikely to
contaminate anything but the target. For example, liposomal
doxorubicin is 2-3 times less toxic than the solution of this
drug [5].

Using target (endothelial) protein antibodies, which
are specific to vessels of various organs, allows manifold
improvement of precision of the nanoparticle-enabled delivery
of active pharmaceutical ingredients and DNA [6-9].

To date, various researchers have described liposome-
based preparations carrying a plethora of active ingredients,
X-ray and scintigraphic tracers, toxins, peptides, proteins and
nucleic acids. The overwhelming majority of studies in this field
has to do with anticancer drugs (most often, anthracycline-
based) [8]. There are five types of liposomes, different in
composition and action in vivo, that the researchers preferred,
namely: simple liposomes; sterically stabilized liposomes;
directed liposomes (immunoliposomes); cationic liposomes;
liposomes sensitive to physical and chemical stimuli, such as
temperature, light, and changes in pH [2, 10] (Table 1).

When progress in biotechnology and genetic engineering
allowed developing a new generation of drugs, such as
recombinant proteins, peptides (biotechnological drugs),
drugs based on nucleic acids (gene therapy drugs), liposomes
acquired a special significance due to the susceptibility of these
medicines to chemical and enzymatic hydrolysis [8, 39-41]. In
gene therapy, liposome nanocontainers may carry a plasmid
with a therapeutic gene sequence, antisense oligonucleotides
or small interfering RNAs [42-44]. The volume of the liposomes
allows them to contain genes of various sizes [45]. Vector
molecules attached to the outer surface of the liposomes target
delivery, a mechanism similar to that used for cytotoxic drugs
and paramagnetic contrast agents.

When liposomes are used as DNA vaccines, they hold the
antigen in their capsule and double as an immunomodulator
[46, 47]. In one of the studies, S-antigen sequence of HBV
(PRc / CMV HBS) enclosed in cationic liposomes was used as
a DNA vaccine [47]. Balb/c mice received a vaccine of 10 pg of
plasmid DNA (i.m., per mouse) twice on days O and 21. After
administration of the native HBsAg, the levels of detectable
cytokines in spleens of mice immunized with the liposome-
based preparation were 4 times higher than those registered in
intact mice and animals vaccinated with DNA, which suggests
a possibility of using this liposomal construct as a Hepatitis B
vaccine.

Both cationic or anionic liposomes and those with a neutral
surface charge can be loaded with DNA. Neutral liposomes
circulate in the bloodstream for a much longer period of time
than the charged ones; moreover, their advantages are lesser
toxicity and non-specific persorption in organs and tissues.
However, it is much harder to load them with DNA. In case
of passive loading, which is a plain emulsification of lipid
components in the presence of DNA, only 10% of the total
amount of DNA gets into the liposomes. There are special
techniques that allow increasing the number to 40%, but, as a
rule, they also increase the size of the liposomes [45]. Charged
liposomes can be loaded with more DNA, which is their key
advantage. However, cationic and anionic liposomes have
higher levels toxicity and non-specific penetration into organs
and tissues than neutral liposomes.

Specifics of the liposome-based drugs quality
and production control

The main stages of production of liposomal drug formulations
and the controlled parameters thereof are listed below [48].

1) Lipid film production and its dispersion/degradation.
Controlled parameters: amount of residual organic solvents in
the lipid film; active pharmaceutical ingredient integration rate
and size of the liposomes after lipid film dispersion; stability;
pH value.

2) Production of liposomes of the required size, separating
the non-integrated active ingredient, sterilization by filtration.
Controlled parameters: amount of the integrated active
pharmaceutical ingredient; size of the liposomes; concentration
of the lipid components; stability; pH value.

3) Lyophilization. Controlled parameters: residual moisture;
stability and percentage of drug integration into the liposomes
after lyophilisate rehydration.

The above-listed stages of the technological process
allow a conclusion that the critical liposome-based drug quality
checks imply determination of its crucial physicochemical
properties; therefore, state registration applications for
such formulations should provide the following information
(Fig. 1).
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Table 1. Use of different types of liposomes for drug delivery

Types of Simple Sterically stabilized Immunoliposomes Qatlonlc Thermosensitive and photosensitive
liposomes (lipoplexes)
Phospholipids the phase transition
temperature of which exceeds body
Modified PEG-vesicles temperature (thermosensitive).
Phospholipids Phospholivids + conjugated with 1,2-Bis(4-(n-butyl)phenylazo-4'-
Composition (neutral and/or negatively pholip monoclonal antibodies Positively charged phenylbutyroyl)phosphatidylcholine
e polyethylene glycol . Ay . g .
specifics charged) and/or (PEG) or their fragments, lipids (Bis-Azo PC) in low concentrations
cholesterol peptides, growth factors, is part of the vesicles of the
glycoproteins, etc. photoisomerized lipid molecule.
May be conjugated with PEG or
antibodies (AB)
Route of Oral, injection, inhalation, | Injection, - Injection, L
L . ; Injection . Injection
administration local, endovitreal oral intranasal

Several minutes to 2-3

Several minutes to

Half-life hours 6-8 hours to several days 4-6 hours Several days
Key Determined

accumulation Liver, spleen, lungs by the attached ligands, Liver, lungs Tumor cells
sites liver, lungs

Mode of action

Passive targeting

Passive targeting

Directed transport

Passive targeting

Directed transport

Examples
of use

— part of the virus,
antibacterial, parasitic
infection vaccines [11];

— delivery of
immunomodulators,
cytotoxic and
antimicrobial compounds
to macrophages;

— treatment of
metastases after surgical
removal of primary
tumors

[12,13];

— delivery of drugs
against intracellular
pathogens [14], systemic
fungal infection, HIV,
mycobacterial infection
[13];

— carrying radioisotopes
and contrast agents for
visualization purposes
[12,13];

— carrying antigens
[12,15]

—accumulation

of drugs in solid
tumors [16-18];

— treatment of small
cell lung cancer
and cutaneous
melanoma [19],
leukemia and lung
carcinoma [20, 21]

— delivery of drug to the
tumor [10, 22-26];

— treatment of chronic
B-lymphocytic leukemia
and acute T-cell leukemia
[23], various lymphomas
[27];

— treatment of breast,
thyroid gland, ovarian
cancer, that of uterus,
lung, esophagus,
stomach, colon and
rectum, kidney

[23, 26, 28]

— delivery of

the genetic
material to the
liver, cell therapy
of endothelial
pulmonary tumors
[2, 29, 30];

- antiangiogenic
therapy;

— treatment of
tumors of neck
and head,
melanomas [30]

— delivery of drug
to the tumor [2, 31]

Key advantages

Penetrate into the
relatively inaccessible
lesions (e.g., in the brain)
due to their negative
charge [32, 33]

Contain PEG, which
prevents liposome
opsonization,
hinders their
recognition by the
reticuloendothelial
system cells and
increases the time
of their persistence
in the bloodstream
[34, 35]

Antibodies allow
modulating distribution
of the liposomes in
organs and tissues.
Optimization of the
drug's therapeutic
properties.

Correction of the
effective dose

Penetrate into the
tumor's vessels (as
opposed to neutral
or negatively
charged liposomes)
(36]

Offer greater selectivity
of action compared
to the free drug [31, 37, 38]

The behavior of the active pharmaceutical ingredient in
a physiological environment is one of the main parameters
influencing the liposome-based drug's PK and PD. Therefore,
for the purposes listed below it is necessary to develop reliable,
validated methods of assessment of the active ingredient
release in vitro.

— Monitoring of imitation of the active ingredient release
from liposomes in the body; a test for "leakage" in vitro in the
relevant environment under various conditions (e.g., in a certain
range of temperatures and pH) can be conducted given there
are grounds for that.

— Monitoring of stability in storage to ensure consistency of lots;

— Investigation of stability and review of the production
process in the intended conditions of use.
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Table 2 provides an example of the certificate data (key
parameters and quality indicators) describing liposomes [49,
50] used for delivery of the therapeutic genes' DNA.

We believe that, depending on the specific function of
the liposomes (e.g., modification of the active ingredient's
distribution by encapsulation in order to improve the safety
profile), the following additional parameters should also be
evaluated in the development of the drug:

—maintaining the integrity of the liposomal formulation in plasma;

— characteristics of the lipid bilayer phase transition process
(transition temperature and enthalpy);

— determination of the surface charge of the liposomes;

— pH of the inner chamber of the liposomes filled by the pH
gradient;
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Lipid components:
description, source and characteristics,
production, quantification, impurity profile,
isomers and stability characteristics

Technological process:
intermediate products identification and control of quality of
their production; compliance of the "active ingredient to lipid
components" ratio (at the key production stages) to the
acceptable range requirements ensuring consistency
of the drug's functional characteristics

L} L]

Information

X subject to
Adjuvants:

quality, purity, stability -

registration
dossier

inclusion to the

Liposomal nanoparticles:
morphology, average size, liposome sizes distribution,
presence of aggregation

4

Finished liposome-based drug:
— share of the encapsulated active ingredient ("free to encapsulated" ratio);

- stability of the active pharmaceutical ingredient, lipids and functional adjuvants in the finished product,
including quantitative assessment of the degradation products (e.g., lysophosphatidylcholine,
oxidized/hydrolyzed fragments);

- rate of release of the active ingredient from liposomes in vitro in physiologically/clinically
relevant environments

Fig. 1. Information about the quality characteristics of liposomal drug formulations

— if significant, determination of characteristics of the active
pharmaceutical ingredient's physical state inside the liposome
(e.g., formation of a precipitate for doxorubicin);

— distribution of the active ingredient (e.g., on the surface of
liposomes, in the bilayer, internal environment, etc.);

— for conjugated (eg, pegylated) liposome-based preparations:
the quality and purity of the pegylated starting material,
molecular weight of the conjugated lipid and size distribution
(dispersion), location of PEG on the surface, stability of the
conjugate.

It is necessary to compile a list of tests each lot should
routinely be subjected to. This list should be based on the
parameters used to characterize the drug in accordance with
the requirements described above.

Table 2. Liposome-based drugs characteristics

Legal regulation of liposome-based
drugs in the world

Table 3 provides the examples of requirements regulator bodies
from various countries of the world impose on the production,
quality control, preclinical and clinical studies of liposome-
based forms of drugs.

CONCLUSIONS

Liposome-based drug delivery systems give a drug designer
control over the active ingredient's absorption and release
parameters. As a rule, liposome-based drugs are less toxic,
pose a lower risk of adverse reactions and allow delivering

Parameters

Analytical/instrumental methods

Physical characteristics

1 | Vesicle size and surface morphology Electron microscopy

Distribution of the vesicles sizes (submicron
and micron ranges)

Dynamic and laser light scattering, exclusion chromatography (gel filtration)

3 | Surface charge

Dynamic light scattering

4 | Surface pH pH sensitive samples

5 | Integrated DNA/free preparation percentage

Methanol-chloroform extraction and centrifugation in separation columns, ion exchange
chromatography, spectrophotometry, radioactive labeling

Chemical characteristics

1 | Phospholipid concentration

Extraction and centrifugation in separation columns

2 | Cholesterol concentration

Extraction and centrifugation in separation columns

3 | Osmolality Osmometry
Biological characteristics
1 | Sterility Pharmacopoeial sterility test

2 | Pyrogenicity

LAL test (Limulus amebocyte lysate test)

3 | Toxicity

In vitro and in vivo monitoring, histology
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Table 3. Regulatory documents containing requirements to liposomal drug

State Document

Selected aspects

Reflection paper on the data requirements for intravenous
liposomal products developed with reference to an

innovator liposomal product/21 February 2013 EMA/
CHMP/806058/2009/Rev. 02, Committee for Human Medicinal
Products (CHMP)

Quality control specifics:

— composition and authenticity of the components (lipids, adjuvants);

— active pharmaceutical ingredient to lipids ratio;

- liposomes morphology, average size and size distribution, aggregation;
— fraction of the encapsulated active ingredient (free/integrated amount);
— stability of the active ingredient, lipids, adjuvants, critical
decomposition products;

— in vitro rate of release of the ingredient from liposomes in
physiologically/clinically significant environments;

— stability;

- recovery;

— maintaining integrity of the liposomal formulation in plasma

Recommendations. Commission recommendation
of 18 October 2011 on the definition of nanomaterial
(Text with EEA relevance) (2011/696/EU)

EU countries

Definition of nanomaterials

Reflection paper on surface coatings: general
issues for consideration regarding parenteral
administration of coated nanomedicine
products/22 May 2013, EMA/325027/2013,
Committee for Medicinal Products

for Human Use (CHMP)

Key critical quality indicators, as well as the requirements for clinical and
preclinical studies, are included. Special attention is paid to the following
aspects:

— presence of a coating can affect the critical properties of the
nanodrugs from the points of view of their safety and efficacy. The
physico-chemical nature of the coating, uniformity of its surface coating
and stability (both in terms of attachment and in terms of degradation)
will determine the drug's PK and biodistribution;

—in some cases, the coating material may cause new biological
reactions that are not observed either for the coating material or for the
active pharmaceutical ingredients separately

Guidance for Industry. Liposome Drug Products Chemistry,
Manufacturing, and Controls; Human Pharmacokinetics and
Bioavailability; and Labeling Documentation.

— U.S. Department of Health and Human Services Food
USA and Drug Administration Center for Drug Evaluation

and Research, 2002

Brief description of the liposomes, critical stages of their production
and quality control, recommendations for conducting research on PK
and bioavailability of liposome-based drugs and labeling requirements.
The guideline contains general principles and recommendations for
registration of the drugs of this class.

USP41-NF36 <1> Injections and implanted
drug products (parenterals)-product quality tests

Contains definition of liposomes and liposome-based drugs and states
that in the case of liposomes, quality control implies both general and
special tests.

Pharmacopoeia of the Peoples Republic of China.
China Beijing: People’s Medical Publishing Hous.
2010; (2). p. A244-245

Definitions of various nanoparticles, requirements, nanodrugs quality
control criteria and methods are provided. The attributes that should be
monitored in production and storage of the drugs (e.g., residual amounts
of organic solvents, shape, particle size and distribution, encapsulation
rate and amount of drugs in liposomes, liposome oxidation degree, etc.)
are listed.

the active ingredient to the target part of the body. Innovative  of
drugs containing liposomes conjugated with antibodies can  to

the liposomal fraction's physicochemical properties is added
the classic quality control methods: the shape, size, and

be targeted with maximum effectiveness and release the charge of the particles are being assessed, as well as marker
active ingredient where needed. However, the more complex  conjugation effectiveness and uniformity of distribution of the
the drug's structure becomes, the more crucial stages its  active ingredient. Key methods for estimating the liposome
production acquires. Moreover, the list of parameters to control,  parameters make use of the optical effects: dynamic and laser
those that determine the quality of the drug, grows. Evaluation  light scattering, electron microscopy.
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