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STUDY OF THE HUMAN BRAIN POTENTIALS VARIABILITY EFFECTS IN P300 BASED
BRAIN-COMPUTER INTERFACE

Ganin IP &, Kaplan AYa
Lomonosov Moscow State University, Moscow, Russia

The P300-based brain~computer interfaces (P300 BCI) allow the user to select commands by focusing on them. The technology involves electroencephalographic
(EEG) representation of the event-related potentials (ERP) that arise in response to repetitive external stimulation. Conventional procedures for ERP extraction and
analysis imply that identical stimuli produce identical responses. However, the floating onset of EEG reactions is a known neurophysiological phenomenon. A failure
to account for this source of variability may considerably skew the output and undermine the overall accuracy of the interface. This study aimed to analyze the effects of
ERP variability in EEG reactions in order to minimize their influence on P300 BCI command classification accuracy. Healthy subjects aged 21-22 years (n = 12) were
presented with a modified P300 BCI matrix moving with specified parameters within the working area. The results strongly support the inherent significance of ERP
variability in P300 BCI environments. The correction of peak latencies in single EEG reactions provided a 1.5-2 fold increase in ERP amplitude with a concomitant
enhancement of classification accuracy (from 71-78% to 92-95%, p < 0.0005). These effects were particularly pronounced in attention-demanding tasks with the
highest matrix velocities. The findings underscore the importance of accounting for ERP variability in advanced BCI systems.
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VN3YYEHUE 3®PEKTOB BAPUATUBHOCTU MOTEHLMANIOB MO3IA YEJIOBEKA B UHTEP®ENCE
MOS3Ir-KOMIMbKOTEP HA BOJIHE P300

W. 1. TanmH B2, A, A1, KannaH
MocKkoBCKWIA rocyfapCTBEHHbIN yHBepeuTeT UMeHn M. B. JTomoHocoBa, Mocksa, Poccurst

TexHonorvst MHTeperc Mo3r—KoMrbioTep Ha BonHe P300 (MMK-P300) no3BonseT nonb3oBaTesnto BbibupaTs KOMaHb! Mpy (hOKyCUMPOBaHM Ha HAX BHUMaHWS. 9TO
BO3MOXXHO 3a cHeT pernctpaumm B 93T NoTeHLUManoB, cBsi3aHHbIX ¢ cobbimuamm (NMCC), BOSHMKAIOLLMX B OTBET HA MHOMOKPATHO MOBTOPSEMbIE BHELLHNE CTUMYSbI.
TpagnumMoHHO npu BbiaeneHun 1 aHanmade MNMCC nonaratoT, YTO peakumm Ha OTAesbHble CTUMYbl MAEHTUYHDBI, XOTA B HEMPOMU3NONOrnM n3BecTeH eHoMeH
BapVaTBHOCTY BO BPEMEHW BO3HUKHOBEHMS Takux peakLmii. MosToMy eCTb MPeanoChINK/A CHUTATb, HTO HEMPUHSTYE BO BHYMaHVe BapuaTtveHocTu MNCC B psige
CNy4aeB MOXET CHKaTb Habnoaaemble B aKCnepuMeHTe apdekTbl, a Takke To4HOCTb paboTel IMK. Llenbto paboTsl 66110 nayunTb ahheKTbl BapUaTVBHOCTH
O0l-peakunii BHUMaHNS NONb3oBaTens K CTUMyNbHbIM komMaHZaMm B VIMK-P300 1 BbISBUTb BO3MOXXHOCTU ydeTa aTunx 9hdeKToB npu Knaccuukaumm
KOMaHz B nHTepdeiice. 300p0BbIM UCTbITyeMbIM 21-22 neT (n = 12) Heobxodumo 6bIO pearnpoBaTh Ha LieneBble CTUMYSbl B MOAMMULIMPOBAHHO HaMK
cTumyneHor matpuLe VIMK-P300, kotopas Morna AB1raTbcs ¢ pasnnmyHbIMM napameTpamy B Npeaenax padbo4ero nons. B nccnenosaHmimn nokasaHo, YTo addexT
BapviatueHocTu MNCC npucytctyeT B TexHonornn VIMK-P300, a ncnonb3oBaHHbI METOL, KOPPEKUMN NAaTEHTHOCTV MUKOB B €AMHUHYHBIX Peakuysx npusen K
YBENMYeHWo aMnnTyabl koMnoHeHToB [NCC B 1,5-2 pasa, a Tak>ke NoBbILLEHUIO TOYHOCTU Knaccudmkaumm ¢ 71-78% 1o 92-95% (p < 0,0005). BapuatvBHOCTb 1
MoBbILLEHNE KNaccugukaLmm nocne KOPPEKLMN NaTeHTHOCTY Bblnn BbiLLe B 6onee TpeboBaTeNlbHOM MO PECYPCaM BHYMAHWSA PEXME C HaMbOomMbLLEN CKOPOCTLIO
[OBVDKEHNS CTUMYNBHOM MaTpuLbl. B LenomM pesynsratbl MoKasbiBatoT BaXKHOCTL y4deTa BapnatnBHoCT kKoMnoHeHToB [1CC B IMK-P300 ons cospaqmsa 6onee
3(PPEKTMBHBIX CUCTEM HENPOYMNPaBEHNS.
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The brain—computer interfaces (BCI) enable the use of executive  applications for BCl includes neurorehabilitation and replacement
devices without mediation of peripheral nerves and muscles.  of speech and locomotion output in patients with severe motor
The technology involves recording and transformation of the  impairments [2]. Other applications of BCI include their use as
electrical activity of the brain, most commonly by means of  accessory means of instrumental diagnostics, e.g. in autism [3]
electroencephalography (EEG) [1]. The conventional scope of  or anorexia nervosa [4], as well as in cognitive training devices [5].
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BCIl systems based on exposure to external stimuli
and detection of event-related potentials (ERP) by EEG are
considered the most efficient in terms of communication
and control [6]. A pioneering interface for text typing termed
P300 BCI was firstly published in 1988 [7]. The user is
presented with a letter matrix and receives the stimuli in
the form of sequential highlighting of the letters. The mental
response to the highlighting of target letters is accompanied by
enhancement of certain ERP components, notably the P300
wave. Based on ERP analysis, the interface identifies the letter
on which the user's attention is focused at the moment (target
stimulus) [8].

The general classification principle in BCI (subdivision of
EEG reactions into target and non-target classes) is based on
the fundamental technique of ERP extraction and analysis. The
technique employs the accumulation of epochs corresponding
to identical repetitive stimuli as a substrate for ERP extraction.
The averaging of these 'identical' epochs reveals a coherent
ERP signal against the background noise which is incoherent
to the moment of stimulation [6].

The variability of latency of individual EEG reactions from
the moment of stimulation is a well-known neurophysiological
phenomenon [9]. A failure to account for this source of
variance can substantially distort the output of individual ERP
components [10]. This effect involves both early and late
components of EEG reactions [11, 12], with the averaged P300
wave being particularly vulnerable [13]. As a consequence, the
amplitude of the component decreases and the width increases
[14]. Beyond its fundamental interest, the temporal variability of
ERP should be regarded as a major hindrance for P300 BCI
classification accuracy.

The latency of ERP components, notably P300, is known
to correlate with the age, cognitive status of the subject
and other parameters [15, 16]. Deviations in characteristics
of isolated responses to external stimuli can be observed in
the divided attention tasks; the variability positively correlates
with the complexity of the second task (i.e. its competitiveness
for perception resources) [16]. The process of achieving a
final goal with BCI (text typing) and execution of immediate
instructions (reacting to stimuli) may be competing tasks
themselves. In addition, the practical use of BCI technology in
real-world settings is usually accompanied by collateral tasks
and events that promote continuous variations in attention and
perception [17]. It should be noted that additional source of
multidirectional destabilization of ERP characteristics, including
variability, involves the stimulation parameters per se: in BCI, the
presentation rate is usually high, up to 4-5 stimuli per second [8],
whereas the majority of standard protocols for ERP acquisition
use presentation of one stimulus in 1-2 seconds [18].

From a neurophysiological perspective, variations in the
brain output are rooted in the hierarchical complexity of the
nervous system organization, so that these variations are
generally considered inherent for the brain [19]. However, the
elevated overall levels of such variation have been associated
with certain pathologies. The abnormally high levels of neuronal
noise and plasticity may interfere with the integrity of external
stimuli processing and production of adequate behavioral
responses, e.g. in autism [19, 20]. The increased variability of
ERP was also demonstrated in patients with attention deficit
hyperactivity disorder, especially under conditions of cognitive
challenge [19, 21].

The cognitive fatigue of the user, a major cause of variability
in EEG reactions [22], may negatively affect the neurocontrol
efficacy in healthy users and even more so in patients. People
with locomotion and speech impairments often have reduced

attention capacities possibly accompanied by cognitive deficits.
Such users tend to quickly get tired and may experience
difficulties upon sustaining the control in BCI [283, 24].

Therefore, the effects of ERP variability in P300 BCI should
be given immense consideration. On the one hand, proper
understanding of the variability patterns will allow enhancement
and optimization of the stimulus environment in terms of
efficiency; on the other hand, it will mitigate the undesirable
effects of variability to facilitate mastering of this technology
by healthy users and notably by patients with neurocognitive
impairments. This study aimed to analyze the effects of ERP
variability in EEG reactions in order to minimize their influence
on P300 BCI command classification accuracy.

METHODS

The study used EEG data obtained earlier in a modified version
of P300 BCI with a stimulus matrix moving freely within the
visual field. The details of this modification and some results
obtained with its use were described by us previously [25].
The current study deals with identification and evaluation of
ERP variability effects possibly encountered by users of such
interfaces.

The recording was carried out at the Faculty of Biology,
Lomonosov Moscow State University, and enrolled 12
participants (four men and eight women) aged 21-22 years.
Inclusion criteria: healthy volunteers of both sexes, aged 18-35
years. Exclusion criteria: diagnosed neurological and/or
mental conditions, a history of convulsive seizures episodes
or diagnosed status epilepticus. The study initially intended to
test the feasibility of ERP-based monitoring of the subject's
attention to continuously moving target stimuli [25].

The participants (subjects) were presented with a 3 x 3
icon matrix, angular dimensions 7.4° x 7.4°, single stimulus
size 2.2° x 2.2°. The stimulation was performed by highlighting
(125 ms in every 500 ms) of the rows and columns of the matrix
in random order.

The subjects were tasked with focusing their attention on a
target stimulus within the matrix, carefully follow this stimulus,
and mentally count the number of highlights encompassing this
stimulus.

The study used various modes and velocities of matrix
motion within the screen limits. The matrix moved at a constant
speed in a straight direction inverted upon reaching the edge of
the screen. A total of six modes were used in the study:

— 'static matrix' (motionless, positioned at the center of the
screen);

— 'horizontal movement' (at 5°/s);

— 'vertical movement' (at 5°/s);

— 'random movement' (at 5°/s, the direction could change
at random moments of time);

— 'velocity 10°/s' (horizontal movement);

— 'velocity 20°/s' (horizontal movement).

Each participant was exposed to all modes succeeding in
random order. Each mode encompassed presentations of 120
target and 240 non-target stimuli.

The EEG recordings were carried out with six scalp
electrodes (Cz, Pz, PO7, PO8, O1 and O2) and a common
reference electrode attached to ear lobule, using an NVX
24 electroencephalograph (Medical Computer Systems;
Zelenograd, Russia) at 250 Hz discretization frequency. We
used the CONAN-NVX software for the recording and original
software written in Python 2.6 for the stimuli presentation.
Synchronization of EEG recording with the highlightings
involved a photodiode sensor. Simultaneously with the
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Fig. 1. Color maps of single target EEG epochs for subject #1, 'static matrix' mode, leads Pz and PO8. Horizontal axis represents time, ms; vertical axis represents
individual epochs numbered and sorted by the number from top to bottom, with the moving average-based vertical smoothing applied in series of 10. A. The epochs
are sorted in chronological order (as recorded). B. The epochs are sorted by peak latency for P300 (Pz) or N1 (PO8). In charts A and B the epochs are synchronized
by the moment of stimulus presentation (vertical dashed lines). C. Peak latency-corrected epochs with dashed lines indicating the moment of stimulus presentation

appearance of the target/non-target stimulus, a small white/
black square appeared in the upper right corner of the screen
exactly beneath the sensor. The signal from the sensor was
recorded along with the EEG data in a separate channel, and
the change in brightness beneath the sensor made it possible
to accurately determine the actual moments of presentation.

The signal processing including ERP extraction and analysis
was carried out in MATLAB 9.11 (R2021b) (MathWorks; USA).
The EEG signal was band-pass filtered within 0.5-20 Hz range
(0.5-10 Hz for working with single epochs and calculating
classification) using a fourth-order Butterworth filter and split
into epochs from —400 to 1200 ms time-locked to the stimulus
onset. The artifact epochs containing +/— 50 pV excess of
signal amplitude in any of the channels were excluded. The
percentage of excluded epochs was usually within 10%.

The epochs were classified into target and non-target and
averaged within each class, subject and mode. The procedure
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yielded target and non-target ERP in a reduced —200 to 800
ms window. The amplitude of P300 was determined as the
maximum signal value in Pz lead within a 300-600 ms window.
The amplitude of N1 component was determined as the
minimum signal value in PO7, PO8, O1 and O2 leads within a
100-300 ms window. Peak latencies were measured from the
stimulus onset.

To analyze the component variability, P300 and N1 peak
latencies were calculated similarly in the same channels and
windows, albeit using single, non-averaged epochs. The
epochs within each lead, mode and subject were sorted
(ordered) based on these latencies. To analyze the variability
of latencies, the median absolute deviation (MAD) value was
calculated within each mode for each subject individually. To
analyze the effect of component variability on calculated ERP,
all epochs were centered on the peak time prior to averaging:
each epoch was shifted by the subtracted difference between
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Fig. 2. An example of averaged target ERP (subject #1) acquired in the 'static matrix' mode. Gray curves correspond to standard method of ERP averaging (no latency
correction applied), black curves correspond to the use of peak latency-corrected epochs for P300 (Pz) and N1 (PO8). Vertical dashed lines (O ms) indicate the moment
of stimulus presentation; red lines indicate the latency of particular component in a given lead

the latency in the averaged ERP and its own specific latency,
forward or backward along the time axis, after which the epochs
were averaged conventionally in a =200 to 800 ms window. In
Cz and Pz leads the epochs were corrected by P300 and in
occipital leads the epochs were corrected by N1. The peak
amplitudes were subsequently calculated for the averaged
corrected ERP. For the group analysis of N1 amplitudes, the
values were calculated using the curves averaged over four
occipital leads (PO7, PO8, O1 and O2).

To assess the variability of the ERP components subject-
wise, the amplitudes were calculated for individual EEG epochs
(raw and latency-corrected); in each epoch, the average signal
value was calculated in a 52 ms window centered on the peak
latency for a particular lead and mode.

To identify the effects of ERP variability on the command
classification accuracy in P300 BCl, offline classification scores
were calculated for all subjects in each mode, separately
for the initial averaged ERP and for the latency-corrected
epochs. The feature vectors for the linear Fisher discriminant
analysis in each mode were built based on signal amplitudes
in all EEG channels, spanning 600 ms post-stimulation (one
point per 50 ms). The classification accuracy was assessed
by cross-validation (leave-one-out) with sequential testing of
each epoch with a classifier trained on all other epochs of the
same mode. The procedure was repeated for all epochs, and
the classification accuracy was assessed as the percentage of

correctly identified epochs (two classes: target and non-target).
To correctly calculate the accuracy before classification, the
quantities of target and non-target epochs were equalized by
randomly deleting a subset of non-target epochs. To exclude
sampling-related variations, this classification process was
repeated 100 times with random elimination of non-target
epochs and the accuracy values obtained over 100 iterations
were averaged.

All quantitative data (amplitudes, latencies and classification
accuracy values) were analyzed using STATISTICA 7.0 package.
One- or two-way analysis of variance (ANOVA) was used for
group analysis. The Tukey's or Benjamini-Hochberg's post-
hoc tests were applied in cases of significant main effects in
pairwise comparisons. The analysis of component amplitudes
within subjects involved the normality check by x? (Chi-square)
test followed by paired Student's t-test.

RESULTS

To visualize the accumulations of single EEG epochs (before
ERP averaging), the time was plotted horizontally, the epochs
were plotted vertically one by one and the amplitude values
were color-coded [11]. This method allows representation
of different grouping options for individual epochs and
accentuates the effects of their variability. Fig. 1 shows an
example of such representation of target epochs for a single
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Fig. 3. The amplitudes of P300 and N1 components (by modulus) for different modes, calculated by the standard method (no latency correction applied) as opposed to
the use of peak latency-corrected epochs for P300 (Pz, right chart) and N1 (left chart). Heights and error bars correspond to means and standard errors of the mean,
respectively (n = 12)
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Fig. 4. The offline classification accuracy for different modes, calculated by the standard method (no latency correction applied) as opposed to the use of peak latency-
corrected epochs for P300 and N1. Heights and error bars correspond to means and standard errors of the mean, respectively (n = 12)

participant, acquired in Pz and PO8 using the 'static matrix'
mode. In Fig. 1A, arrangement of the epochs from top to
bottom corresponds to their actual chronological order. In
Fig. 1B, the epochs are sorted by latency so that epochs with
earlier peaks of P300 (in Pz) or N1 (in PO8) are located at the
top. Fig. 1C shows the latency-corrected epochs, i.e. adjusted
with the use of averaged latency value for particular mode and
channel. For better clarity, we applied vertical smoothing by the
'moving average' in 10 epoch series.

Fig. 2 shows ERP obtained by averaging of raw and latency-
corrected epochs for the same participant (subject). The
latency-corrected amplitudes of both components significantly
exceeded the initial values obtained by raw averaging without
correction for the peak latency. These differences were
significant for all subjects in all modes (p < 0.001, paired
Student's t-test).

We further analyzed the influence of latency correction
procedure on the calculated amplitudes of P300 and N1
components at the group level; the results are presented in
Fig. 3. The amplitudes of P300 and N1 obtained with the
latency-corrected epochs were significantly higher compared
to those calculated by conventional method. Two-way ANOVA
('latency correction' factor — two levels, 'motion type' factor —
four levels including the 'static matrix' mode) revealed significant
effect of latency correction on the amplitudes of P300:
F(1,11)=95.7 and A =0.10 at p = 0.000001, and N1: F(1,11) = 58.1
and A = 0.16 at p = 0.00001. The 'motion type' factor had
significant effect on P300: F(3,9) = 7.5, A = 0.29 at p = 0.008
(a lower amplitude for horizontal movement), but not N1.

The analysis of 'latency correction' and 'velocity' factors
(comprising, respectively, two and three levels) revealed
significant influence of the 'latency correction' factor on the
amplitudes of P300: F(1,11) =88.5and A = 0.11 at p = 0.000001,
and N1: F(1,11) =46.6 and A = 0.19 at p = 0.00003, despite the
lack of significant influence from 'velocity', and significant
interaction between the two factors for N1 component:
F(2,10) = 10.4 and A = 0.32 at p = 0.0036 (a tendency towards
lower amplitude at the highest velocity identified with the use of
conventional averaging of the epochs).

The group analysis of ERP variability using MAD indicator
of the peak latency revealed certain statistically significant
effects. The movement velocity factor (three levels) significantly
affected N1 component in PO8, O1 and O2 leads: F(2,22) = 4.4
at p = 0.024, F(2,22) = 3.8 at p = 0.037 and F(2,22) = 4.9 at
p = 0.017, respectively. Post-hoc analysis revealed a higher
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variability (expressed through MAD) upon using the highest
velocity mode compared to slower movement. The effects
observed in O1 and O2 leads were significant (o < 0.05),
whereas in PO8 the differences amounted to a trend (p < 0.1).
The analysis revealed no significant effects of the 'motion type'
factor on N1 component and the 'motion type' and 'velocity'
factors on P300 component.

Fig. 4 compares the offline classification accuracy for the
standard ERP extraction algorithm as compared to the use of
P300 and N1 peak latency-corrected data. Two-way ANOVA
('latency correction' factor — two levels, 'motion type' factor —
four levels) revealed significant effect of the latency correction
procedure on classification accuracy: F(1,11) = 102.7 and
A = 0.09 at p = 0.00001. Post-hoc analysis revealed higher
classification accuracies when using latency-corrected epochs
in all four modes (94.7, 92.2, 93.2 and 94.8%) compared with
the conventional ERP extraction procedure (respectively, 78.3,
78.1, 78.3 and 76.1%; p < 0.0001 for all modes). Two-way
ANOVA ('latency correction' factor — two levels, 'velocity'
factor — three levels) revealed significant effects of both
the calculation method and the matrix movement velocity:
F(1,11) = 110.0 and A =0.09 at p = 0.00000; F(2,10) = 6.0 and
A=0.46 at p = 0.0196, as well as significant interaction between
these factors: F(2,10) = 11.5and A = 0.30 at p = 0.0026. Post-
hoc analysis revealed higher classification accuracy when
using latency-corrected epochs in all three modes (92.2, 93.7
and 94.0%) compared with the conventional ERP extraction
procedure (respectively, 78.1, 76.7 and 71.2%; p < 0.0005 for
all modes). Of note, in the highest velocity mode, the accuracy
was significantly lower than in two other modes (71.2% vs 78.1
and 76.7%; p < 0.05) unless the latency correction was applied.

DISCUSSION

Overall, the obtained results confirm that ERP variability is
inherent to P300 BCI and should be considered as a major
influence on the shapes of ERP components; the exact impact
depends on the degree of attention involvement. Correction
of such variability at the level of single EEG reactions can
substantially improve the command interpretation accuracy.
Despite the fact that ERP approach relies on the averaging
of multiple EEG reactions to a stimulus, at certain signal
processing parameters the detection of individual reaction
peaks is quite feasible. This statement is illustrated well by our
data (Fig. 1) along with other studies [9, 10, 12]. Importantly,



OPUIMHAJTbHOE MCCNEOQOBAHUE | HEMPOBKONOIA

the analysis of single epochs allows correction for the variable
peak latency in individual realizations of the response to
ultimately afford a better extraction quality and enhanced
amplitude for the components of interest (Fig. 2). Despite the
well-established phenomenon of variable latency, prediction of
its specific impact in P300 BCl is nontrivial, as the conventional
BCI stimulation rates are considerably higher compared with
those typically used in psychophysiological studies. One one
hand, this difference can mitigate the variability and stabilize the
temporal heterogeneity of the reactions; on the other hand, it
might also augment the heterogeneity and complicate correct
interpretation of the stimulus at higher rates of presentation,
as the suboptimal conditions for the attention/concentration
activity may promote a concomitant increase in ERP variability
[20]. The variable latency has been attributed to the inherent
variance of time required for perception and categorization of
the stimulus in every single presentation event [26]. We show
that accounting for the variability effects allows significant
enhancement of the amplitude for components that represent
attention to target stimuli at both individual and group levels
(Figs. 2 and 3).

Despite the lack of significant effects of different matrix
motion modes on the amplitudes, MAD index showed
increased variability of N1 component at higher velocities of
the matrix. The decrease in visual acuity upon increase in the
speed of tracked objects [27] has been associated with a
concomitant increase in attention costs. Given the profound
association of ERP components with specific features of
oculomotor functionality [28], the observed increase in N1
component variability at higher velocities can be explained
by the inherent attention variance combined to the pressing
demand for tracking the matrix cells. The observation is also
consistent with the decreased amplitude of N1 component in
the difference (target — non-target) waveforms reported by us
previously [25]. Noteworthy, the effect is characteristic of this
earlier component, sensitive to target events at the eye fixation
point [29], but not of the later P300 component.

Apart from its fundamental relevance, the developed
correction procedure is of clear applied interest. The accounting
for the latency factor in ERP components significantly rescued
the accuracy of target stimuli classification in the modified
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