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SOURCES AND IMPACT OF HUMAN BRAIN POTENTIAL VARIABILITY IN THE BRAIN-COMPUTER
INTERFACE
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In the brain-computer interface based on the P300 wave (P300 BCI), the selection of the command by the user becomes possible due to focusing the user's
attention on the external stimulus/command and extraction of the response to this stimulus in the form of the event-related potential (ERP) components from EEG.
To obtain the ERP signal, stimuli should be repeated many times, however, in view of the existing variability in latency of the response to certain stimuli, the averaged
ERPs may give a distorted view of the nature of such responses and reduce accuracy of the interface. The study was aimed to develop an effective method for
identification of the effects of the ERP components' latency variability and for accounting these effects in the P300 BCl, as well as to identify the possible impact
of psychophysiological factors on the nature of ERP variability. We have conducted a BCl-based study of 19 healthy subjects involving extraction and adjustment
of latency in the N1 and P300 spatial components, which play a key role in the command classification in the P300 BCI, to explore the mechanisms underlying
variability. Such an approach ensured higher accuracy compared to the use of conventional EEG leads, and the highest increase of 10% was observed when using
the minimum number of the stimulus repetitions. Furthermore, modifications of the interface allowing one to ensure a higher level of the user's focus on the task and
a more accurate visual fixation on the target objects contributed to the increase in the amplitude of the ERP components by reducing variability of the responses
to single stimuli. The findings emphasize the important role of the processes underlying the ERP components' variability and provide an effective tool for scientific
exploration of such processes and the development of advanced BCl systems.
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MCTOYHUKN N BHAHUMOCTb BAPUATUBHOCTU NOTEHLIMATIOB MO3IrA HEJTOBEKA
B UHTEP®ENCE MO3r-KOMIbIOTEP

W. M. TanmH!®, A, H. Bacunbes'?, T. [. Masosa', A. 4. KannaH'

T MOCKOBCKMIA FOCyAapCTBeHHbIN yHMBEpcuTeT nveHn M. B. JlomoHocosa, Mockea, Poccust
2 LleHTp HepOKOTrHUTUBHBIX MccnefoBaHWiA (MSM-LeHTp), MOCKOBCKMI rocyAapCTBEHHbIM MCUXONOro-neaarornieckumii yHmBepcmnteT, Mockea, Poccus

B nHTEpderice Modr-komnbioTep Ha BonHe P300 (MIMK-P300) Bbi6op kOMaHL, Mofb30BaTenst BO3MOXEH 3a CHET (DOKYCUPOBaHMS M BHUMaHWSI Ha BHELLHEM
CTUMyne-KOMaHae v BblaeneHnn 13 93 peakuum K 3TOMy CTUMYISTy — B BUAE KOMMOHEHTOB MOTEHLMAN0B, CBs3aHHbIX ¢ cobbimuamm (MCC). Ansa nonyyeHns
curHana MNCC cTnMynbl HEOOXOAUMO MHOFOKPATHO MOBTOPSATh, OAHAKO BBUAY CYLLECTBYIOLLE BApUATUBHOCTM NIATEHTHOCTU PeaKLMA Ha OTAENbHbIE CTUMYbI
ycpeaHeHHble NMCC MoryT aaBaTb MCKaXXeHHOe NpeacTaBneHne O XxapakTepe Takux peakuyil, a TakKe CHPKATb TOYHOCTb paboThl nHTepdeiica. Liensto padboTsl
6b110 pagdpaboTarb 3hdhexTnBHbI CNOcod BbISBEHVS aDMEKTOB BapmaTVBHOCTH NATEHTHOCTN KoMMoHeHToB MNCC 1 ydveTa atux addextos B VIMK-P300, 1
BbISAB/Tb BO3MOXKHOE BIIMSIHME NCUXOMU3NONOrndeckmx hakTopoB Ha xapakTep BapuatneHocTy MNCC. Onsa nsy4eHnst MexaH13mMoB BapuaTUBHOCTY Mbl MPOBEN
VIMK-nccnepoBaHve Ha 19 300p0BbIX UCMbITYEMBIX, MAE NCMONL30BaV BbIAENEHME N KOPPEKUMIO NAaTEHTHOCTU B MPOCTPaHCTBEHHbLIX KOMMOHeHTax N1 1 P300,
MrpatoLLMX KIKHEBYIO POSb B Knaccudmkaumm komang B VIMK-P300. 9T1oT noaxog obecnedmnn 6onee BbICOKYO TOYHOCTb MO CPaBHEHWIO C UCMONb30BaHNEM
06bI4HbIX OTBEAESHN D3, MpK 3TOM HambonbLLMiA pocT B 10% Habmofancs Npy MUHUMaUTbHOM YiCe MOBTOPOB CTUMYIIOB. Takke Mogudukaumm nHtepdeiica,
noseosnsioLLe 0becrnednTs 6onee BLICOKWIA YPOBEHb BHUMaHUS MONb30BaTenst K 3afjade v Oonee 4eTkylo ukcaumio B3rNsaa Ha LeneBbix obbekTax,
CnocobCTBOBaIM MOBBILLEHVIO aMNANTYL, KOMMOHEHTOB NCC NOCPEeACTBOM CHKEHS BAPUATVBHOCTY PeaKLnin Ha eQVHMYHbBIE CTMYAbI. [onyyYeHHble peaynsTaTbl
NMOAYEPKMBAIOT BaXKHYIO POfib MPOLIECCOB BapuaTvBHOCTH KOMMOHEHTOB 1CC 1 patoT ahheKTUBHbIA MHCTPYMEHT ANA X HAYYHOrO M3yHYeHVs, a Takke Ons
paspaboTKM NepCneKkTUBHbIX cucTeM VIMK.
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Brain-computer interfaces (BCl) make it possible to directly
translate brain activity into commands to control computer or
any other device without involving muscles and nerves, only
via analysis of the user's electroencephalogram (EEG) [1]. The
concept of BCI, proposed and developed many years ago, has
become an interdisciplinary technology, the primary purpose of
which is supporting people with severe speech and movement
disorders [2], along with the use as a tool for instrumental
diagnosis or cognitive training [3-5].

BCI technologies ofter involve the use of event-related
potentials (ERPs) [6]. One is the most widely used and well-
proven systems is referred to as P300 BCI, since it is based
on the analysis of the P300 component related to attention
[7, 8]. The user of such interface usually mentally counts the
number of flashes of the character or other command symbol
of interest. The ERPs elicited to flashing of this (target) object
are distinguished from ERPs elicited to flashing of all other
(non-target) symbols by the presence of the P300 component
[9]. The BCI algorithm recognizes the target symbol (command)
by this feature and the presence of other components (primarily
N1) in the ERP [10, 11].

The P300 BCI systems are in demand for communication:
during typewriting or step-by-step control of certain device [12].
However, the main disadvantages of those include the need
for repetition of stimuli aimed at accumulating ERP responses
with the least error when the BCI user has to focus on the
task for a long time. Furthermore, despite the assumption of
similarity of the brain responses to the repeated stimuli, there is
some temporal variability of certain responses relative to stimuli
[13, 14]. This is a well-known neurophysiological phenomenon
that generally reflects a number of natural brain processes at
different levels, from cellular to the neural network level, and
is also determined by fluctuation in the processes underlying
perception of external stimuli [15].

It is known that such variability can affect the shape of
the resulting averaged ERPs, including reducing the peak
amplitude of certain components [16]. Lack of accounting of
the variability effects may negatively affect the effectiveness of
the P300 BCI based on the ERP extraction method, thereby
reducing accuracy of the target command recognition [17, 18].

In general, changes in the ERP variability are considered
to be associated with fatigue, increased cognitive load,
complication of the user's task [15, 19], as well as conditions
characterized by reduced attention, such as ADHD and
autism [20, 21]. However, the factors affecting ERP variability
in terms of P300 BCI were never systematically studied.
Meanwhile, identification of the BCI operation modes having
a beneficial or negative effect on ERPs and the command
classification accuracy would make it possible to develop
more effective systems capable of ensuring more reliable
control, especially when it comes to potential users with
reduced attention.

It also seems appropriate to consider ERP variability in the
P300 BCI by modifying the command classification algorithms.
This can be particularly important when a relatively small
number of stimuli is accumulated in the interface, and the
effects of variability may not be compensated by the number
of averaging procedures. Given the ERP components' different
contributions to classification along with variation in their
topography among various users [22], extracting independent
spatial components to analyze and consider their variability
separately can be a more effective approach.

The study was aimed to identify possible factors of the
stimulus environment and P300 BCI operation modes affecting
ERP variability, as well as to develop and test more effective
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methods for independent detection of variability of individual
ERP components during classification.

METHODS

The study involved 19 healthy subjects (5 males and
14 females) aged 18-23. Inclusion criteria: healthy male
and female volunteers aged 18-35. Exclusion criteria:
diagnosed neurological/mental disorder, episodes of seizures
or diagnosed status epilepticus.

During the experiment the subject sat in a chair in front of
the monitor on which a standard P300 BCI matrix sized 6 x 6
with letters of Russian alphabet and numbers was presented.
The angular dimensions of the matrix were 18° x 18°, the cell
size was 1.7°, and the cell spacing was 1.1°. The background
of the screen and cells was black (RGB 0,0,0), while cell frames
and characters within the cells were grey (RGB 89,90,97).
Stimuli were represented by random flashes (the background
color changed from black to grey, and the color of characters
changed from grey to black) of rows and columns in the matrix.
The duration of stimulus and the interstimulus interval were 97
and 48.5 ms, respectively (16 and 8 frames for the refresh rate
of 165 Hz). Stimulation involved using the stimulus sequences,
each sequence included presentation of all 12 stimuli available
in the matrix (six rows and six columns).

A separate experimental mode included 15 blocks, one cell
of the matrix per block was designated as a target cell (it was
marked by repeated wink at the start of the block). Five stimulus
sequences per block were presented, which corresponded to
60 stimuli (10 target stimuli and 50 non-target ones). Thus, each
mode included 150 target stimuli and 750 non-target ones.

Several modes distinguished by parameters of the stimulus
environment and the subject's task were used to study the
impact of various factors on the ERP variability. In the passive
attention mode the subject was not supposed to count flashes
of the target stimulus as in the P300 BCI, he/she simply fixed
his/her gaze on the target cell. The task was complicated by
using the mode involving mixing-up letters: the characters in
all cells of the matrix randomly changed their places with each
target flash. The subjects were asked to count not only all
target flashes, but the number of consonants in the target
cell when the character changed. To make it easier to fix
gaze on the cell and reduce the effects of distractor in the
modes involving the use of half-empty matrix, the characters
were not made permanently visible, these appeared only with
flashes (Fig. 1).

The modes and brief instructions for the subject were as
follows:

1) ordinary matrix, passive attention (“just look at the target
cell);

2) ordinary matrix, active attention (“‘count the number of
flashes of the target cell”);

3) half-empty matrix, active attention (“count the number of
flashes of the target cell”);

4) half-empty matrix, mixing up, active attention (“count the
number of flashes of the target cell’);

5) half-empty matrix, mixing up, cognitive load (“count the
number of consonants in the target cell”);

©6) ordinary matrix, mixing up, active attention: (“count the
number of flashes of the target cell’);

7) ordinary matrix, mixing up, cognitive load (“count the
number of consonants in the target cell”).

All modes alternated to generate a pseudo-random
sequence, except for the passive attention mode that was
always the first due to special instruction.
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Fig. 1. The stimulus matrix P300 BCI used in the study. The matrix was located in the center of the screen on the black background. “Ordinary matrix” is on the left,

“half-empty matrix” is on the right

EEG was recorded with 30 scalp electrodes (Fp1, Fp2,
F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC86, T7, C3, Cz, C4, T8,
CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO7, POz, POS,
01, 02) and a common reference electrode TP9 + TP10 using
the NVX52 amplifier (MCS, Zelenograd; Russia). The sampling
frequency was 1000 Hz. A miniature photosensor mounted
in the upper left corner of the screen was used to ensure
EEG synchronization with the flashes. Signal recording and
management of experimental procedure were implemented
in the original Resonance programming environment written in
C++ (http://resonance.bcilab.net/documentation).

QW
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-1 F
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EEG signal processing and classification were performed
in MATLAB 9.13 (R2022b) (MathWorks; USA). The EEG signal
was band-pass filtered within the 1-10 Hz range using a FIR
filter without a phase shift. Then ocular artifacts were removed
by independent component analysis (ICA). After that the
continuous signal was split into epochs from —400 to 1200 ms
relative to the stimulus onset.

The next phase of analysis involved acquisition of spatial
filters to extract the components of interest (N1 and P300) from
the multichannel EEG signal. For that the epochs in the vicinity of
individual ERP peaks were extracted in each subject, after that

.

Fig. 2. The extracted spatial components N1 and P300. The figure above shows topography of the spatial filter patterns. The figure below shows components N1 and
P300 averaged across all subjects. Vertical axis — normalized amplitude in arbitrary units; horizontal axis — time (s). The vertical dotted line (O s) corresponds to the

stimulus onset. N = 19 subjects
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Table 1. The average amplitudes of the N1 and P300 components in all modes when using the standard averaging method (no latency correction) and when averaging
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the epochs adjusted to latency of the appropriate component. The mean and standard error of the mean are provided. N = 19 subjects

Component Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7
Amplitude with no latency correction, AU
N1 -1.17 £ 0.11 -1.38 + 0.08 -1.53 + 0.09 -1.50 + 0.08 -1.81 +0.09 -1.29 £ 0.09 -1.67 + 0.11
P300 0.92 + 0.07 1+0.06 0.94 + 0.07 0.86 + 0.06 1.07 + 0.08 0.89 + 0.06 1.05 + 0.05
Amplitude with latency correction, AU
N1 -1.50 + 0.09 -1.67 + 0.08 -1.81+£0.07 -1.77 £ 0.07 -2.05 + 0.09 -1.59 £ 0.07 -1.93 + 0.09
P300 1.47 + 0.06 1.59 + 0.04 1.52 + 0.06 1.46 + 0.04 1.62 + 0.07 1.53 + 0.04 1.67 + 0.04

optimal spatial projections (spatial filters) were calculated based
on the Fisher’s criterion [23]. Such method made it possible to
reduce the EEG signal dimension, increase the signal-to-noise
ratios of the studied components, and largely isolate two
components from each other for independent study [23]. The
further analysis was performed for these two extracted spatial
components (once for N1 and once for P300). Signals of the
components were normalized to the standard deviation of all
non-target epochs within each subject (hereinafter, AU instead
of pVv).

A set of target and non-target epochs was formed within
each subject, component (N1 and P300), and mode. To acquire
ERPs averaged by conventional method, all the epochs of the
same subject were averaged individually for each mode, for
the class of the target and non-target epochs of the N1 and
P300 sets. The amplitude of these components was defined
as the minimum/maximum signal value within the 100-350 and
200-500 ms windows, respectively, and the peak latencies
were defined as the time after the stimulus onset when the
signal reached its maximum or minimum.

Furthermore, to analyze the ERP variability, the N1 and
P300 component latencies were calculated within certain
non-averaged target epochs as local minima or maxima in the
same windows as for ERP. The component's amplitude was
determined by the signal values for the latencies found within
this epoch. To assess variability of the ERP peak latencies, the
mean absolute deviation (MAD) was calculated in each mode
for each subject. To estimate the effect of variability on the ERP
amplitude, the epochs were shifted along the time axis by the
difference between the average latency and the component
latency within certain epoch prior to averaging.

To estimate the effects of ERP variability on the effectiveness
of command recognition in the BCI, classification accuracy
was calculated for ordinary EEG channels (standard approach)
and for the extracted spatial components N1 and P300. It is
important to note that classification scores of two types were
calculated for the latter: without equalization of latency peaks
and with equalization (correction for N1 or P300 only and
correction for both peaks, N1 and P300). The signal amplitude
values within the 0-600 ms window (every 10th point) in 11
channels of EEG leads Cz, CP1, CP2, P3, Pz, P4, PO7, POz,
P08, O1, 02 or two channels obtained for N1 and P300 of

appropriate spatial components were used as the Fisher's
linear discriminant features. The classification accuracy was
assessed by cross-validation with sequential testing of the
data of a single block (all epochs of the same target cell) of the
classifier trained using the other 14 blocks. The classification
accuracy was determined as a proportion of the correctly
recognized letters (out of 15). When performing testing,
accuracy was calculated for different number of the stimulus
sequences (one to five). The accuracy was calculated for each
mode, subject, and signal feature extraction method.
Statistical analysis was performed in MATLAB using the
generalized linear mixed effects models. A single constant
coefficient was used as a random factor for the "subject"
variable, while experimental conditions (“active attention”,
“cognitive load”, “half-empty matrix”, “mixing up elements”)
and latency correction modes were considered as fixed effects.
The fixed effect significance was assessed using F-test. The
following dependent variables were assessed: amplitude,
latency, MAD of the N1 and P300 latencies, and classification
accuracy. We used binomial regression to assess classification
accuracy and linear regression to assess other parameters.

RESULTS

Fig. 2 shows the extracted spatial components N1 and P300
and the corresponding patterns (topographic distribution of
weighting coefficients). The N1 component with the average
latency of 187 ms had typical lateral occipital localization, while
P300 with the latency of 315 ms had medial parietal localization.

Table 1 provides the group-averaged amplitudes of the N1
and P300 components obtained in each mode, before and
after correction of latencies within individual epochs. The
N1 and P300 amplitudes of the averaged ERPs increased
after applying correction: F(1.258) = 581.24; p = 0.00000.
The factor of active attention turned out to be significant for
the N1 amplitude that increased relative to passive attention
to the stimulus (mode 1): F(1.36) = 17.87; p = 0.00015. The
increase in the N1 amplitude was reported for such factors,
as “half-empty matrix” (F(1,110) = 16.10; p = 0.00011) and
“cognitive load” (F(1.110) = 48.49; p = 0.00000). The increase
in the P300 amplitude was reported for the “cognitive load”
factor (F(1.110) = 18.01; p = 0.00005), while the decrease

Table 2. The average absolute latencies and the average indicators of their variability (MAD) for the N1 and P300 components in all modes. The mean and standard

error of the mean are provided. N = 19 subjects

Component Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7
Latency, ms
N1 187 + 3.25 187 £2.6 184 +2.3 185+2.2 185+ 2.1 191 +2.6 19127
P300 323 +10.5 320+£9.3 303 +10.6 302 +10.4 305 +11.6 316 +10.3 325 +10.8
Mean absolute deviation (MAD) of latency, ms
N1 211 +15 189+14 16.3+1.2 18.0+1.1 15.1+0.8 19.2+1.6 175+15
P300 425+2.2 413+22 43227 449 +2.6 43.0+24 440+25 449 £ 2.7
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Table 3. The average classification accuracy obtained in all modes for one or two stimulus sequences that has been calculated for various signal feature sets used by
the classifier — usual 11 EEG electrodes and the extracted spatial components N1 and P300 with or without peak latency correction. The mean and standard error of

the mean are provided. N = 19 subjects

Method of the signal feature extraction Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

Accuracy when using one stimulus sequence, %

EEG leads 66.7 +5.4 75.3+4.6 77.29 3.7 744 +£4.0 84.2 +3.0 68.4+4.6 80.7 + 3.1

Spatial components 56.4 +5.8 63.5+4.2 68.8 + 3.7 62.8 + 3.2 76.8 +2.8 59.7 + 3.7 73.0 +3.3

Spatial components + correction of N1 + P300 76.8 +3.4 81.8+29 86.3 + 3.0 85.3+2.6 86.7 £ 2.9 76125 84.9+22
Accuracy when using two stimulus sequences, %

EEG leads 83.9+4.1 90.0 + 2.1 94714 94.0+1.7 96.8 + 1.3 88.8 + 4.1 923 +2.1

Spatial components 75.8+4.9 86.6 + 3.3 86.3+2.8 88.8+2.0 93.3+1.9 82.8+4.0 93.0 1.2

Spatial components + correction of N1 + P300 94.0+1.2 971 +£1.0 97.5+1.6 93.3+1.8 97.9+1.0 954 +1.5 96.8+1.5

was reported for the factor of “mixing up elements” (F(1.110)=4.72;  DISCUSSION

p = 0.032).

The average latencies of the N1 and P300 components
together with the indicator of the latency variability (MAD) are
provided in Table 2. The decrease in the N1 and P300 latencies
were reported for the factor of “half-empty matrix”: F(1.110) = 45.87,
p = 0.00000 and F(1,110) = 24.51, p = 0.00000, respectively.
The increase in the N1 latency was also reported for
the factor of “mixing up elements”: F(1.110) = 5.17;
p = 0.025. Active attention resulted in the decrease of the
N1 component MAD relative to the passive attention mode:
F(1.36) = 1.60; p = 0.0016. The decrease in the N1 MAD was
reported for the factors of “half-empty matrix” (F(1.110) = 12.43;
p = 0.00061) and “cognitive load” (F(1.110) = 11.56;
p = 0.00094). As for P300, the increase in MAD was reported
for the factor of “mixing up elements”: F(1.110) = 4.80;
p = 0.03056.

Table 3 provides assessment of the average classification
accuracy in all modes using different signal feature extraction
methods: EEG channels and the channels for N1 and P300 of
the corresponding spatial components, to which the latency
correction was applied or not applied. The table provides data
for the minimum number (1 or 2) of the stimulus sequences
per letter, when accuracy is still low, and the differences
between the modes are larger. The trend towards an increase
in accuracy is reported for the “cognitive load” factor:
F(1.108) = 3.39; p = 0.068.

Fig. 3 presents the average classification accuracy
for different signal feature extraction methods and different
number of the stimulus sequences. When using spatial filters
(only two data vectors, for N1 and P300) without latency
correction, the accuracy was the lowest and was even lower
than when using the usual 11 EEG electrodes: F(1.3284) = 5.99,
p =0.014. Applying latency correction to the spatial component
N1 only yielded higher accuracy, however, this option did not
differ significantly from the option involving the use of usual
EEG electrodes: F(1.3284) = 1.1771, p = 0.28. However,
applying latency correction to the spatial component P300
only resulted in higher accuracy compared to the use of usual
EEG electrodes: F(1.3284) = 24.51, p = 0.00000. The highest
classification accuracy values were obtained when applying
latency correction to both N1 and P300 (in each of the two
appropriate spatial components). In this case, the accuracy
was higher compared to the use of usual EEG electrodes
(F(1.3284) =24.29, p = 0.00000) and higher than when applying
latency correction to P300 only (F(1.3284) = 4.34, p = 0.037)
(as for the latter, the differences were reported for the 2" and
3 stimulus sequences: p < 0.05).

In our study we proposed an effective approach to assessing
the ERP variability in the P300 BCI that allowed us to identify a
number of factors affecting the ERP characteristics and explore
the contribution of the variability effects to the command
recognition accuracy in this interface.

To analyze the effects of the ERP latency variability, it
is necessary to detect the components in individual (non-
averaged) epochs. This process is very complicated due to
both technogenic and physiological noise, that is why it is
extremely important to make the most of valuable information
contained in the EEG signal. Despite the fact that in some
trials the effects of variability were studied in terms of the P300
BCl, the impact of these effects was estimated in usual EEG
channels for the P300 component only [17, 24]. In our previous
study, we applied latency correction to two components, N1
and P300, however, each component was analyzed in its own
channel set [18]. The use of the combined information from
all channels with simultaneous analysis of several components
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Fig. 3. The average classification accuracy with different number of the stimulus
sequences calculated for various signal feature sets used by the classifier —
usual 11 EEG electrodes, extracted spatial components N1 and P300
(no latency correction, latency correction applied to N1 only, to P300 only, or
to both components, N1 and P300). The mean and standard error of the mean
are provided. N = 19 subjects
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in each of these channels can be a more effective approach.
For example, the independent components extracted by ICA
have been already used by the authors of papers on assessing
variability (not related to BCI), however, these researchers
have analyzed only one early component of ERP [21. 25].
Furthermore, the ICA method does not guarantee extraction
of the components of interest for analysis. In this study we
have proposed the use of spatial filters for extraction of two
components, N1 and P300, that are functionally significant
for the P300 BCI, with subsequent analysis of variability in
these components instead of individual EEG channels. This
method was used earlier [23], but in that study it was an
additional step of preprocessing and extraction of the signal
features for classification in the BCI, it had nothing to do with
assessment of the ERP variability effects. The extraction of
spatial components aimed at independent correction of these
components has never been applied previously. Moreover, the
use of the approach involving spatial components reduces the
likelihood of erroneous peak detection within individual epochs
compared to the use of signal in certain EEG leads, thereby
making the variability analysis more objective.

An essential aspect of the work was to reveal the possible
factors affecting the ERP characteristics in the P300 BCI.
Active attention (the directive to emotionally count flashes)
resulted in the increase in the N1 component amplitude, and
the mechanism underlying such an increase was likely to
include the decrease in the latency variability of responses to
individual stimuli, since a simultaneous decrease in MAD was
observed. The increase in the ERP components' amplitude
relative to passive attention to stimuli in the P300 BCI has
been earlier reported for such construct in this group [26].
Presumably, the directive to actively count the stimuli improves
fixation of gaze on the target position within the matrix, which is
important for the N1 component [27]. Lack of characters in all
cells of the matrix is also likely to improve fixation of gaze on the
target cell, since the N1 amplitude increase in the “half-empty
matrix” mode has been reported along with the decrease in
its variability. This is consistent with opposite effects on the
N1 component in the environment, where tracing the target
objects is complicated by their mobility [18], and supports
the relationship between the features of oculomotor system
function and the ERP components' variability [28].

The constant changing of characters in the matrix cells
is likely to adversely affect attention to the target stimulus,
as evidenced by the decrease in the P300 amplitude and
the increase in its variability, along with the increase in the
N1 latency. The negative impact of such manipulations with
the stimulus environment on the P300 BCl is also confirmed
by the fact that the subjects have reported trouble following
instructions in the modes involving mixing-up characters. At
the same time, an interesting and not entirely obvious result
is that additional cognitive load applied in the modes involving
mixing-up characters (counting consonants with the change of
letters), in contrast, resulted in the increase in the N1 and P300
amplitudes. Furthermore, the effect reported for N1 at least
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CONCLUSIONS
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operation modes having an impact on the ERP variability
effects. Specifically, modifications of the interface affecting
the user's attention, including the cognitive load applied
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