Published online: 2019-03-14
DOI: 10.24075/brsmu.2019.013
Genetically encoded fluorescent sensors are exploited to study a variety of biological processes in living organisms in real time. In recent years, a whole family of biosensors has been developed, serving to visualize changes in the glutathione redox state. The aim of our experiment was to design a biosensor based on the red fluorescent protein mKate2 for measuring the 2GSH/GSSG ratio. A pair of cysteine amino acid residues were introduced into the structure of the fluorescent protein using site-directed mutagenesis. These residues form a disulfide bridge when the surrounding glutathione pool is oxidized, affecting the spectral characteristics of the protein. Our biosensor, which we called roKate, was tested in vitro on an isolated protein. Specifically, we examined the spectral characteristics, pH and the redox potential of the sensor. Additionally, the performance of roKate was evaluated using the culture of living mammalian cells. The fluorescent signal emitted by the sensor was very bright and remarkably stable under pH conditions varying in the physiological range. Irreversibly oxidized in mammalian cells, roKate stands out from other members of this biosensor family. This biosensor should be preferred in the experiments when the time between the manipulations with the biological object and the subsequent analysis of the induced effect is substantial, as is the case with long sample preparation.
Published online: 2019-03-12
DOI: 10.24075/brsmu.2019.011
Today, increasing attention is being paid to the role of circadian rhythms in pathology. There are time-of-day-dependent immune markers that provide valuable information about disease progression. The aim of this study was to measure evening and morning concentrations of a few cytokines (interleukins, adhesion molecules, tumor necrosis/growth factors, etc.) in the peripheral blood of patients with stage II essential hypertension and to investigate how they correlate with a nocturnal blood pressure decline. Blood samples were collected from 90 patients with stage II EH at 7:00 a.m. and 8:00 p.m. Cytokine concentrations were measured using immunoassays. Based on 24-h blood pressure monitoring, the patients were distributed into 3 groups: dippers, non-dippers and night-peakers. The morning to evening ratios of cytokine concentrations in patients with EH differed from those in healthy controls due to an increase in the evening concentrations of somnogenic cytokines (IL1β, IL1α) and LIF, sLIFr, and M-CSF whose daily fluctuations patterns remain understudied. On the whole, the fluctuation patterns of the measured cytokines in patients with stage II EH who had had the condition for 10 to 14 years and were receiving no antihypertensive treatment at the time of our study differed from those displayed by healthy controls. A twenty percent rise in the evening concentrations of IL1α, LIF, sLIFr, M-CSF, and erythropoietin contributes significantly to pathological blood pressure rhythms (as demonstrated by the groups of non-dippers and night-peakers) in patients with stage II EH receiving no antihypertensive therapy. Understanding the pathophysiological role of cytokine levels and their fluctuations over a 24-h cycle could inspire new methods for EH prevention and reduce end-organ damage.