ORIGINAL RESEARCH

Synchrotron IR-microspectroscopy-based visualization of molecular and chemical interactions between dental cement, biomimetic composite and native dental tissue

Goloshchapov DL1, Kashkarov VM1, Ippolitov YuA2, Ippolitov IYu2, Vongsvivut Jitraporn3, Seredin PV1
About authors

1 Voronezh State University, Voronezh, Russia

2 Burdenko Voronezh State Medical University, Voronezh, Russia

3 Australian Synchrotron, Melbourne, Australia

Correspondence should be addressed: Pavel V. Seredin
Universitetskaya pl.1, Voronezh, 394018; ur.usv.syhp@luap

About paper

Funding: the study was supported by the Russian Science Foundation (Grant 16-15-00003).

Acknowledgment: IR microspectroscopy was conducted at the Australian Synchrotron.

Author contribution: Goloshchapov DL planned the study, analyzed the literature, collected and interpreted the obtained data; Kashkarov VM collected, analyzed and interpreted the obtained data; Ippolitov YuA planned the study, prepared the samples, collected and analyzed the data; Ippolitov IYu prepared the samples; Jitraporn Vongsvivut conducted IR microspectroscopy; Seredin PV planned the study, analyzed the literature, collected, analyzed and interpreted the obtained data, and conducted IR microspectroscopy.

Received: 2019-07-18 Accepted: 2019-07-31 Published online: 2019-08-01
|
  1. Peutzfeldt A, Sahafi A, Flury S. Bonding of restorative materials to dentin with various luting agents. Oper Dent. 2011 Jun; 36 (3): 266–73.
  2. Temel UB, Van Ende A, Van Meerbeek B, Ermis RB. Bond strength and cement-tooth interfacial characterization of self-adhesive composite cements. Am J Dent. 2017 Aug; 30 (4): 205–11.
  3. Rohr N, Fischer J. Tooth surface treatment strategies for adhesive cementation. J Adv Prosthodont. 2017 Apr; 9 (2): 85–92.
  4. Pontes DG, Araujo CTP, Prieto LT, de Oliveira DCRS, Coppini EK, Dias CTS, Paulillo LAMS. Nanoleakage of fiber posts luted with different adhesive strategies and the effect of chlorhexidine on the interface of dentin and self-adhesive cements. Gen Dent. 2015 Jun; 63 (3): 31–7.
  5. Barandehfard F, Kianpour Rad M, Hosseinnia A, Khoshroo K, Tahriri M, Jazayeri HE, Moharamzadeh K, Tayebi L. The addition of synthesized hydroxyapatite and fluorapatite nanoparticles to a glass-ionomer cement for dental restoration and its effects on mechanical properties. Ceramics International. 2016 Nov 15; 42 (15): 17866–75.
  6. Simon JC, A. Lucas S, Lee RC, Darling CL, Staninec M, Vaderhobli R, Pelzner R, Fried D. Near-infrared imaging of secondary caries lesions around composite restorations at wavelengths from 1300–1700-nm. Dental Materials. 2016 Apr 1; 32 (4): 587–95.
  7. Uskoković V. Biomineralization and biomimicry of tooth enamel. In: Non-Metallic Biomaterials for Tooth Repair and Replacement [Internet]. Elsevier; 2013 [cited 2014 Sep 10]: 20–44. Available from: http://linkinghub.elsevier.com/retrieve/pii/ B9780857092441500021.
  8. Niu L, Zhang W, Pashley DH, Breschi L, Mao J, Chen J, Tay FR. Biomimetic remineralization of dentin. Dental Materials. 2014; 30 (1): 77–96.
  9. Cao C, Mei M, Li Q, Lo E, Chu C. Methods for Biomimetic Mineralisation of Human Enamel: A Systematic Review. Materials. 2015 May 26; 8 (6): 2873–86.
  10. Dorozhkin SV. Hydroxyapatite and Other Calcium Orthophosphates: Bioceramics, Coatings and Dental Applications [Internet]. Nova Science Publishers, Inc New York; 2017 [cited 2017 Aug 23]. 462 p. Available from: https://istina.msu.ru/publications/ book/58538935/
  11. El Rhilassi A, Mourabet M, Bennani-Ziatni M, El Hamri R, Taitai A. Interaction of some essential amino acids with synthesized poorly crystalline hydroxyapatite. Journal of Saudi Chemical Society. 2016; 20 (Suppl 1): 632–40.
  12. Li H, Gong M, Yang A, Ma J, Li X, Yan Y. Degradable biocomposite of nano calcium-deficient hydroxyapatite-multi(amino acid) copolymer. Int J Nanomedicine. 2012; (7): 1287–95.
  13. Aljabo A, Abou Neel EA, Knowles JC, Young AM. Development of dental composites with reactive fillers that promote precipitation of antibacterial-hydroxyapatite layers. Materials Science and Engineering: C. 2016; (60): 285–92.
  14. Tavafoghi M, Cerruti M. The role of amino acids in hydroxyapatite mineralization. Journal of The Royal Society Interface. 2016 Oct 1; 13 (123): 20160462.
  15. Ruan Q, Zhang Y, Yang X, Nutt S, Moradian-Oldak J. An amelogenin–chitosan matrix promotes assembly of an enamel-like layer with a dense interface. Acta Biomaterialia. 2013 Jul; 9 (7): 7289–97.
  16. Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, et al. Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protocols. 2014; 9 (8): 1771–91.
  17. Vongsvivut J, Pérez-Guaita D, Wood BR, Heraud P, Khambatta K, Hartnell D, et al. Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells. Analyst. 2019 Mar 14; 144 (10): 3226–38.
  18. Seredin P, Goloshchapov D, Ippolitov Y, Vongsvivut P. Pathology-specific molecular profiles of saliva in patients with multiple dental caries — potential application for predictive, preventive and personalised medical services. EPMA Journal. 2018 Jun 1; 9 (2): 195–203.
  19. Hędzelek W, Marcinkowska A, Domka L, Wachowiak R. Infrared Spectroscopic Identification of Chosen Dental Materials and Natural Teeth. Acta Physica Polonica A. 2008 Aug; 114 (2): 471–84.
  20. Seredin PV, Goloshchapov DL, Prutskij T, Ippolitov YuA. Fabrication and characterisation of composites materials similar optically and in composition to native dental tissues. Results in Physics. 2017; (7): 1086–94.
  21. Erusalimov FA, Ippolitov YuA, Kunin AA. Bioactive bonding system [Internet]. RU2423966C2, 2011 [cited 2019 Jul 18]. Available from: https://patents.google.com/patent/RU2423966C2/en
  22. Seredin PV, Goloshchapov DL, Gushchin MS, Ippolitov YA, Prutskij T. The importance of the biomimetic composites components for recreating the optical properties and molecular composition of intact dental tissues. J Phys: Conf Ser. 2017; 917 (4): 042019.
  23. Ippolitov YuA. The possibility of bond system biological compatibility improvement for adhesion of hard dental tissues to filling material. Volgogradskij nauchno-medicinskij zhurnal. 2010; 4 (28): 31–4.
  24. Seredin PV, Goloshchapov DL, Prutskij T, Ippolitov YuA. A Simultaneous Analysis of Microregions of Carious Dentin by the Methods of Laser-Induced Fluorescence and Raman Spectromicroscopy. Opt Spectrosc. 2018 Nov 1; 125 (5): 803–9.
  25. Khan AS, Khalid H, Sarfraz Z, Khan M, Iqbal J, Muhammad N, et al. Vibrational spectroscopy of selective dental restorative materials. Applied Spectroscopy Reviews. 2017 Jul 3; 52 (6): 507–40.
  26. Kobrina Y, Rieppo L, Saarakkala S, Pulkkinen HJ, Tiitu V, Valonen P, et al. Cluster analysis of infrared spectra can differentiate intact and repaired articular cartilage. Osteoarthritis and Cartilage. 2013 Mar 1; 21 (3): 462–9.
  27. Atmeh AR, Chong EZ, Richard G, Festy F, Watson TF. Dentin-cement Interfacial Interaction: Calcium Silicates and Polyalkenoates. Journal of Dental Research [Internet]. 2012 Mar 20 [cited 2018 Apr 13]; Available from: http://journals.sagepub. com/doi/abs/10.1177/0022034512443068