Published online: 2018-08-17
DOI: 10.24075/brsmu.2018.035
Patients with chronic obstructive pulmonary disease (COPD) are unable to do physical exercises included into standard pulmonary rehabilitation programs. Neuromuscular electrical stimulation (NMES) is a good alternative for such patients as it does not aggravate shortness of breath. The aim of this work was to assess the effect of short-term NMES of the quadriceps femoris muscle on the physical activity of patients with COPD. Our prospective open randomized study was carried out in 36 patients distributed into two groups. The main group was administered NMES for 10 days. On day 10 clinical and functional parameters, as well as adverse events, were evaluated. On admission to hospital, the groups did not differ in terms of the studied parameters. Following the treatment course, the main group significantly improved their step count and electromyography results (418.5 (86.0; 815.0) vs. 226.7 (48.0; 660.0), p = 0.02, and 463.0 (122; 804) vs. 210.5 (64; 481), p = 0.0001, respectively). The patients scored much less on the Mmrc and Borg scales and the CAT-test: 22.8 (18.0; 34.0) vs. 28.4 (26.0; 34.0), p = 0.00007; 2.7 (2.0; 4.0) vs. 3.1 (3.0; 4.0), p = 0.03; and 6.3 (5.0; 7.0) vs. 7.2 (6.0; 9.0), p = 0.0002, respectively. No adverse events were registered in the main group. Based on the obtained results, we conclude that shortterm NMES of the quadriceps femoris muscle improves physical activity, the quality of life and ability to do physical exercise in patients with COPD providing them with a good alternative to standard rehabilitation programs.
Published online: 2018-08-11
DOI: 10.24075/brsmu.2018.032
Natural non-pathogenic and vaccine strains of human enteroviruses are currently considered as promising agents capable of treating various kinds of cancer, including glioblastoma multiforme, the most aggressive brain tumor with so far no effective therapy. Enteroviruses can selectively replicate in cancer cells and cause tumor lysis. However, the ability of enteroviruses to persist in tumor tissue for a long period of time and to replicate in several successive cycles while spreading from cell to cell remains largely unclear. This study aimed to determine the possibility of completely destroying subcutaneous mouse xenografts of human glioblastomas through a single intravenous administration of virus-carrying peripheral blood leukocytes, as well as to find out the duration of persistence of the virus in the body of experimental animals in the context of viral therapy. Neurospheres were formed in vitro by incubating fragments of patients-derived glioblastomas and used to initiate subcutaneous tumors in immunodeficient mice. It was established that human peripheral blood leukocytes infected in vitro can effectively deliver Coxsackie A7 virus to the tumor cells. A single injection of 2 × 104 virus-infected leukocytes led to a gradual regression of tumors, while the virus presence was constantly detectable in the blood of mice, up to the complete regression of the tumors. The study allows to make the conclusion that blood leukocytes can effectively deliver Coxsackie A7 virus to the tumor. In the absence of a full-fledged immune response in mice, the viruses persist in tumors leading to their complete destruction.


Published online: 2018-07-01
DOI: 10.24075/brsmu.2018.021
The use of CRIPSR-Cas systems in genome editing has recently become one of the major research areas. Meanwhile, CAS proteins can be employed to develop novel techniques for molecular diagnostics. Traditional approaches to the identification of microorganisms have a few drawbacks: they are time-consuming (microbiological methods), insufficiently sensitive (immunoassays), expensive or labor-intensive (PCR, sequencing). The aim of this work was to obtain a functionally active Cas13a protein that could be used as a diagnostic tool and study its behavior under different conditions and at various target concentrations. We constructed an expression vector with the cas13a gene of Leptotrichia wadei under the control of T7 promoter. We obtained a functionally active Cas13a RNAse with pre-programmed activity, guide RNA, and a fragment of influenza B RNA sequence serving as a target. The functional activity of Cas13 RNAse was assessed by fluorescence in the reaction mix containing guide RNA, target RNA, and a molecular RNA beacon. The obtained protein Cas13a was able to specifically recognize the target and did not exhibit any non-specific RNAse activity. This study can become a basis for developing a novel, rapid, specific and sensitive method for pathogen detection.
Published online: 2018-03-04
DOI: 10.24075/brsmu.2018.003
There is an urgent need for new antimicrobial and therapeutic strategies to deal with the ever evolving antimicrobial resistance among the most prevalent bacterial pathogens. Infections due to virulent bacteria remain significant causes of morbidity and mortality despite progress in antimicrobial therapy, primarily because of the increasing of antimicrobial resistance levels among such group of bacteria. Despite significant advances in the understanding of the pathogenesis of infection due to these organisms, there are only limited strategies to prevent infection. Recently it was reported that SkQ1, triphenyl phosphonium-based mitochondria-targeted antioxidant and antibiotic, effectively kills all tested Gram-positive laboratory strains including of Bacillus subtilis, Staphylococcus aureus and Mycobacterium sp. Moreover, SkQ1 demonstrated effectiveness towards Gram-negative strains too, except Escherichia coli. The mechanism of the bactericidal action of TPP-based antibiotics could be also described by its ability to suppress bacterial bioenergetics by collapsing membrane potential through activation of protonophorous uncoupling. To this date, there are no reports of resistance to SkQ1 among Gram-positive strains; therefore, triphenyl phosphonium-based antibacterial agents would be effective towards planktonic and sessile cells of clinical resistant strains.
Dear researcher!
At the end of 2015, Bulletin of RSMU saw an important change in its typographic design and content. We formulated new editorial policies and established strict ethical standards for submitted manuscripts in accordance with the guidelines of reputable international bodies. As a result, about a quarter of the submitted works have been rejected, the primary reason being the author trying to submit a previously published article. Sometimes authors believe that by making slight changes to the introduction, excluding a few people from the study, performing a new statistical analysis, and thus obtaining totally new results they will turn their old manuscript into a novel work. That is why we would like to talk about scientific integrity, honesty, plagiarism, and self-plagiarism in our special project “Author’s work”.
Richard FEYNMAN Cargo cult science
American physicist Richard P. Feynman, a Nobel laureate, was always very scrupulous about the quality of a research study. During his commencement address at the California Institute of Technology in 1974, he talked about scientific integrity and honesty and warned young researchers “not to fool” themselves. A must-read for anyone who believes he/she is a true scientist.
Ivan PAVLOV On the Russian mind
In 1918, Russian physiologist Ivan Pavlov, a Nobel laureate, delivered two lectures: on the mind in general and the Russian mind in particular; on those mind qualities that determine the success of a research work and on how these qualities are present in the Russian mind. Pavlov's thoughts are an effective vaccine against poor intellectual work.
2018-01-25 OUR NEWS
Publishing fee

Since 2018 the journal "Bulletin of RSMU" publishes manuscripts in which financial support for the research is declared, on a fee basis. Regardless of the source of funding, the type of paper and the volume of the text, the publishing fee is 30 thousand rubles. We want to emphasize that we are not talking about advertising publications — we do not publish advertisements. At the same time we are sure that modern science develops much more effectively if access to new research data is free. The journal will continue to work in the open-access format.

2018-01-24 OUR NEWS
We use DOI!

DOI (Digital Object Identifier) is an important tool for organizing the storage of scientific texts. Assigning scientific books or publications with DOIs makes their search much easier for researchers around the world. "Bulletin of RSMU" gave DOIs to all papers published in both language versions of the journal in 2016–2017. We see the first results: regular reports from CrossRef (an international agency that organizes work with identifiers) show that some papers of the authors of the "Bulletin of RSMU" already has several tens of views thanks to DOIs.