ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Клиническое значение определения цитокинов у пациентов с рассеянным склерозом и взаимосвязь с герпетической инфекцией

Н. С. Баранова1, М. С. Грись1, А. А. Баранов1, Н. Н. Спирин1, А. С. Артюхов2, К. М. Шакирова2, Е. Л. Насонов3,4
Информация об авторах

1 Ярославский государственный медицинский университет, Ярославль, Россия

2 Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва, Россия

3 Научно-исследовательский институт ревматологии имени В. А. Насоновой, Москва, Россия

4 Первый Московский государственный медицинский университет имени И. М. Сеченова, Москва, Россия

Для корреспонденции: Наталия Сергеевна Баранова
ул. Революционная, д. 5, г. Ярославль, 150000, Россия; ur.liam@sn_avonarab

Информация о статье

Финансирование: работа выполнена при финансовой поддержке Федерального государственного бюджетного учреждения «Фонд содействия развитию малых форм предприятий в научно-технической сфере» (Фонд содействия инновациям) в рамках программы УМНИК: Участник молодежного научно-инновационного конкурса (договоры №3560ГУ1/2014 от 23.09.2014, № 8815ГУ2/2015 от 17.12.2015).

Вклад авторов: Н. С. Баранова, М. C. Грись — планирование, дизайн исследования, анализ данных, подготовка рукописи; М. C. Грись, А. С. Артюхов, К. М. Шакирова — сбор данных, проведение исследования; А. А. Баранов — анализ данных; все авторы — редактирование рукописи.

Соблюдение этических стандартов: исследование одобрено этическим комитетом ФГБОУ ВО ЯГМУ Минздрава РФ (протокол № 1 от 1 октября 2013 г). Все пациенты подписали добровольное информированное согласие.

Статья получена: 24.07.2023 Статья принята к печати: 20.08.2023 Опубликовано online: 31.08.2023
|
  1. Бойко А. Н., Хачанова Н. В., Мельников М. В., Сиверцева С. А., Евдошенко Е. П., Спирин Н. Н. и др. Новые направления иммунокоррекции при рассеянном склерозе. Журнал неврологии и психиатрии им. С. С. Корсакова. 2020; 120 (2): 103–9. DOI: 10.17116/jnevro2020120021103.
  2. Göbel K, Ruck T, Meuth SG. Cytokine signaling in multiple sclerosis: Lost in translation. Mult Scler J. 2018; 24 (4): 432–9. DOI: 10.1177/ 1352458518763094.
  3. D'Angelo C, Reale M, Costantini E, Di Nicola M, Porfilio I, de Andrés C, et al. Profiling of Canonical and Non-Traditional Cytokine Levels in Interferon-β-Treated Relapsing–RemittingMultiple Sclerosis Patients. Front Immunol. 2018, 9: 1240. DOI: 10.3389/fimmu.2018.01240.
  4. Бойко А. Н., Смирнова Н. Ф., Золотова С. Н., Гусев Е. И. Эпидемиология и этиология рассеянного склероза. Consilium Medicum. 2008; 10 (7): 5–8.
  5. Pietropaolo V, Fioriti D, Mischitelli M, Anzivino E, Santini M, Millefiorini E, et al. Detection of human herpesviruses and polyomaviruses DNA in a group of patients with relapsingremitting multiple sclerosis. New Microbiol. 2005; 28 (3): 199–203.
  6. Sotelo J, Ordonez G, Pineda B, Flores J. The participation of varicella zoster virus in relapses of multiple sclerosis. Clin Neurol Neurosurg. 2014; 119: 44–8. DOI: 10.1016/j. clineuro.2013.12.020.
  7. Engdahl E, Gustafsson R, Huang J, Biström M, Lima Bomfim I, Stridh P, et al. Increased Serological Response Against Human Herpesvirus 6A Is Associated With Risk for Multiple Sclerosis. Front Immunol. 2019; 10: 2715. DOI: 10.3389/fimmu.2019.02715.23.
  8. Попова Е. В., Бойко А. Н., Хачанова Н. В., Шаранова С. Н. Вирус Эпштейна–Барр в патогенезе рассеянного склероза (обзор). Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2014; 114 (2–2): 29–34.
  9. Attfield KE, Jensen LT, Kaufmann M, Friese MA, Fugger L. The immunology of multiple sclerosis. Nat Rev Immunol. 2022; 22: 734–50. DOI: 10.1038/s41577-022-00718-z.
  10. Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, et al. Longitudinal analysis reveals high prevalence of Epstein– Barr virus associated with multiple sclerosis. Science. 2022; 375 (6578): 296–301. DOI: 10.1126/science.abj8222.
  11. Bjornevik K, Münz C, Cohen JI, Ascherio A. Epstein–Barr virus as a leading cause of multiple sclerosis: mechanisms and implications. Nat Rev Neurol. 2023; 19 (3): 160–171. DOI: 10.1038/s41582023-00775-5.
  12. Aghbash PS, Hemmat N, Nahand JS, Shamekh A, Memar MY, Babaei A, et al. The role of Th17 cells in viral infections. Int Immunopharmacol. 2021; 91: 107331. DOI: 10.1016/j. intimp.2020.107331.
  13. Воробьева А. А., Иванова М. В., Фоминых В. В., Захарова М. Н., Зигангирова Н. А., Гуляева Н. В. Биомаркеры рассеянного склероза (обзор и собственные данные). Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2013; 113 (10–2): 23–31.
  14. D'Ambrosio A, Pontecorvo S, Colasanti T, Zamboni S, Francia A, Margutti P. Peripheral blood biomarkers in multiple sclerosis. Autoimmun. Rev. 2015; 14: 1097–110. DOI: 10.1016/j. autrev.2015.07.014 1568-9972.
  15. Melamud MM, Ermakov EA, Boiko AS, Kamaeva DA, Sizikov AE, Ivanova SA, et al. Multiplex Analysis of Serum Cytokine Profiles in Systemic Lupus Erythematosus and Multiple Sclerosis. Int J Mol Sci. 2022; 23: 13829. DOI: 10.3390/ijms232213829.
  16. Christophi GP, Gruber RC, Panos M, Christophi RL, Jubelt B, Massa PT. Interleukin-33 upregulation in peripheral leukocytes and CNS of multiple sclerosis patients. Clin Immunol. 2012; 142 (3): 308–19. DOI: 10.1016/j.clim.2011.11.007.
  17. Sosvorova L, Kanceva R, Vcelak J, Kancheva L, Mohapl M, Starka L, et al. The comparison of selected cerebrospinal fluid and serum cytokine levels in patients with multiple sclerosis and normal pressure hydrocephalus. Neuro Endocrinol Lett. 2015; 36 (6): 564–71. PMID: 26812299.
  18. Alsahebfosoul F, Rahimmanesh I, Shajarian M, Etemadifar M, Sedaghat N, Hejazi Z, et al. Interleukin-33 plasma levels in patients with relapsing-remitting multiple sclerosis. BioMol Concepts. 2017; 8 (1): 55–60. DOI: 10.1515/bmc-2016-0026.
  19. de J Guerrero-García J, Rojas-Mayorquín AE, Valle Y, PadillaGutiérrez JR, Castañeda-Moreno VA, Mireles-Ramírez MA, et al. Decreased serum levels of sCD40L and IL-31 correlate in treated patients with Relapsing-Remitting Multiple Sclerosis. Immunobiology. 2018; 223: 135–41. DOI: 10.1016/j.imbio.2017.10.001.
  20. Franzoi AEA, Gonçalves MVM, Nascimento O, Becker J. Interleukin 31 and Mast Cells: A New Piece in the Puzzle of the Pathophysiology of Multiple Sclerosis? Int J Brain Disord Treat. 2018; 4: 026. DOI: 10.23937/2469-5866/1410026.
  21. Maier S, Motataianu A, Barcutean L, Balint A, Hutanu A, Zoltan B, et al. A Interferon-β 1a, an immunomodulatory in relapsing remitting multiple sclerosis patients. The effect on proinflammatory cytokines. Farmacia. 2020; 68 (1): 65–75. DOI: 10.31925/farmacia.2020.1.10.
  22. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011; 69 (2): 292–302. DOI:m10.1002/ana.22366.
  23. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology. 1983; 33: 1444–52. DOI: 10.1212/WNL.33.11.1444.
  24. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014; 83 (3): 278–286. DOI: 10.1212/WNL.0000000000000560.
  25. Бойко А. Н., Гусева М. Р., Хачанова Н. В., Гусев Е. И. Вопросы современной терминологии при рассеянном склерозе. Журнал неврологии и психиатрии им. С. С. Корсакова. Спецвыпуски. 2018; 118 (8–2): 121–7. DOI: 10.17116/ jnevro2018118082121.
  26. Bărcuţean LI, Romaniuc A, Maier S, Bajko Z, Moţăţăianu A, Adina H, et al. Clinical and serological biomarkers of treatment’s response in multiple sclerosis patients treated continuously with interferonβ-1b for more than a decade. CNS Neurol Disord Drug Targets. 2018; 17 (10): 780–92. DOI: 10.2174/18715273176661 80917095256.
  27. Ad'hiah AH, Salman ED. Predictive Significance of Interleukins 17A and 33 in Risk of Relapsing–Remitting Multiple Sclerosis. Baghdad Science J. 2022; 1191–200. DOI: 10.21123/ bsj.2022.6431.
  28. Mado H, Adamczyk-Sowa M, Bartman W, Wierzbicki K, Tadeusiak B, Sowa P. Plasma Interleukin-33 level in relapsingremitting multiple sclerosis. Is it negatively correlated with central nervous system lesions in patients with mild disability? Clin Neurol Neurosurg. 2021; 206: 106700. DOI: 10.1016/j.clineuro.2021.106700.
  29. Мельников М. В., Шаранова С. Н., Коновалова О. Е., Смирнова Н. Ф., Пащенков М. В., Бойко А. Н. Влияние глатирамера ацетата на функционирование Th1- и Th17клеток у больных рассеянным склерозом. Журнал неврологии и психиатрии им. С. С. Корсакова. 2018; 8 (2): 151. DOI: 10.17116/jnevro2018118082121.
  30. Оспельникова Т. П., Морозова О. В., Исаева Е. И., Лиждвой В. Ю., Колодяжная Л. В., Андреева С. А. и др. Мониторинг цитокинов у больных рассеянным склерозом в процессе лечения препаратом IFNβ-1a. Журнал неврологии и психиатрии им. С. С. Корсакова. Спецвыпуски. 2015; 115 (8–2): 71–71.
  31. Якушина Т. И., Лиждвой В. Ю., Василенко И. А., Андрюхина О. М., Котов С. В. Дополнительные показатели для оценки эффективности терапии рассеянного склероза (предварительные данные). Журнал неврологии и психиатрии им. С. С. Корсакова. Спецвыпуски. 2013; 113 (2–2): 61–65.
  32. Сурсякова Н. В., Байдина Т. В., Куклина Е. М., Трушникова Т. Н., Ожгибесова Т. В. Факторы, регулирующие активность В-лимфоцитов, как потенциальные биомаркеры рассеянного склероза. Журнал неврологии и психиатрии им. С. С. Корсакова. Спецвыпуски. 2019; 119 (2–2): 24–27. DOI: 10.17116/jnevro20191192224.
  33. Soldan SS, Lieberman PM. Epstein–Barr virus and multiple sclerosis. Nat Rev Microbiol. 2023; 21 (1): 51–64. DOI: 10.1038/ s41579-022-00770-5;
  34. Pender MP, Csurhes PA, Burrows JM, Burrows SR. Defective T-cell control of Epstein–Barr virus infection in multiple sclerosis. Clin Transl Immunology. 2017; 6 (1): e126. DOI: 10.1038/ cti.2016.87.
  35. Grut V, Biström M, Salzer J, Stridh P, Jons D, Gustafsson R, et al. Cytomegalovirus seropositivity is associated with reduced risk of multiple sclerosis-a presymptomatic case-control study. Eur J Neurol. 2021; 28 (9): 3072–9. DOI: 10.1111/ene.14961.
  36. Zhao J, Qin C, Liu Y, Rao Y, Feng P. Herpes simplex virus and pattern recognition receptors: an arms race. Front Immunol. 2021; 11: 613799. DOI: 10.3389/fimmu.2020.613799.
  37. Najafi S, Ghane M, Poortahmasebi V, Jazayeri S, YousefzadehChabok, S. Prevalence of herpes simplex virus in patients with relapsing-remitting multiple sclerosis: a case-control study in the North of Iran. Arch Clin Infect Dis. 2016; 11: e36576. DOI: 10.5812/archcid.36576.
  38. Duarte LF, Farıas MA, A lvarez DM, Bueno SM, Riedel CA, ́ Gonzalez PA. Herpes simplex virus type 1 infection of the central ́ nervous system: insights into proposed interrelationships with neurodegenerative disorders. Front Cell Neurosci. 2019; 13: 46. DOI: 10.3389/fncel.2019.00046.
  39. Грись М. С., Баранова Н. С., Спирин Н. Н., Касаткин Д. С., Киселев Д. В., Шипова Е. Г. Рассеянный склероз у пациентов с герпесвирусной инфекцией: особенности клинической картины и течения. Неврология, нейропсихиатрия, психосоматика. 2021; 13 (Прил. 1): 21–26. DOI: 10.14412/2074- 2711-2021-1S-21-26.
  40. Ferrante P, Mancuso R, Pagani E, Guerini FR, Calvo MG, Saresella M, et al. Molecular evidences for a role of HSV-1 in multiple sclerosis clinical acute attack. J Neurovirol. 2000; 6 (2): 109–14. PMID: 10871797.
  41. Waubant E, Mowry EM, Krupp L, Chitnis T, Yeh EA, Kuntz N, Common viruses associated with lower pediatric multiple sclerosis risk. Neurology. 2011; 76 (23): 1989–95. DOI: 10.1212/ WNL.0b013e31821e552a.
  42. Гончарова З. А., Беловолова Р. А., Мегерян В. А. Клиникоиммунологические особенности рассеянного склероза на фоне реактивации персистирующей герпесвирусной инфекции. Саратовский научно-медицинский журнал. 2018; 14 (1): 126–32.
  43. Kwilasz AJ, Grace PM, Serbedzija P, Maier SF, Watkins LR. The therapeutic potential of interleukin-10 in neuroimmune diseases. Neuropharmacology. 2015; 96: 55–57. DOI: 10.1016/j. neuropharm.2014.10.020.
  44. Rojas JM, Avia M, Martín V, Sevilla N. IL-10: A Multifunctional Cytokine in Viral Infections. J Immunol Res. 2017; 2017: 6104054. DOI: 10.1155/2017/6104054.
  45. Zhang L, Yuan S, Cheng G, Guo B. Type I IFN promotes IL10 production from T cells to suppress Th17 cells and Th17associated autoimmune inflammation. PLoS One. 2011; 6 (12): 1–11. DOI: 10.1371/journal.pone.0028432.
  46. Schönrich G, Abdelaziz MO, Raftery MJ. Epstein–Barr virus, interleukin-10 and multiple sclerosis: A me´nage à trois. Front. Immunol. 2022; 13: 1028972. DOI: 10.3389/ fimmu.2022.1028972.
  47. Jog NR, Chakravarty EF, Guthridge JM, James JA. Epstein Barr Virus Interleukin 10 Suppresses Anti-inflammatory Phenotype in Human Monocytes. Front Immunol. 2018; 9: 2198. DOI: 10.3389/fimmu.2018.02198.
  48. Kang MS, Kieff E. Epstein–Barr virus latent genes. Exp Mol Med. 2015; 47 (1): e131. DOI: 10.1038/emm.2014.84.
  49. Maertzdorf J, Osterhaus AD, Verjans GM. IL-17 expression in human herpetic stromal keratitis: modulatory effects on chemokine production by corneal fibroblasts. J Immunol. 2002; 169 (10): 5897–903. DOI: 10.4049/jimmunol.169.10.5897.
  50. Fredj NB, Rizzo R, Bortolotti D, Nefzi F, Chebel S, Rotola A, et al., Evaluation of the implication of KIR2DL2 receptor in multiple sclerosis and herpesvirus susceptibility. J Neuroimmunol. 2014; 271 (1–2): 30–35. DOI: 10.1016/j.jneuroim.2014.03.017.
  51. Rizzo R, Bortolotti D, Fainardi E, Gentili V, Bolzani S, Baldi E, et al. KIR2DL2 inhibitory pathway enhances Th17 cytokine secretion by NK cells in response to herpesvirus infection in multiple sclerosis patients. J Neuroimmunol. 2016; 294: 1–5. DOI: 10.1016/j. jneuroim.2016.03.007.
  52. Maier S, Simu M, Hutanu A, Barcutean L, Voidazan S, Bajko Z, et al. Clinical immunological correlations in patients with multiple sclerosis treated with natalizumab. Brain Sci. 2020; 10 (11): 802. DOI: 10.3390/brainsci10110802.
  53. Watford WT, Moriguchi M, Morinobu A, O'Shea JJ. The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev. 2003; 14: 361–68. DOI: 10.1016/ S1359-6101(03)00043-1.
  54. Broberg EK, Setala N, Eralinna JP, Salmi AA, Roytta M, Hukkanen V. Herpes simplex virus type 1 infection induces upregulation of interleukin-23 (p19) mRNA expression in trigeminal ganglia of BALB/c mice. J Interferon Cytokine Res. 2004; 22: 641–51. DOI: 10.1089/10799900260100123.
  55. Di Salvo E, Ventura-Spagnolo E, Casciaro M, Navarra M, Gangemi S. IL-33/IL-31 axis: a potential inflammatory pathway. Mediator. Inflammat. 2018: 3858032. DOI: 10.1155/2018/3858032.
  56. Maier E, Werner D, Duschl A, Bohle B, Horejs-Hoeck J. Human Th2 but not Th9 cells release IL-31 in a STAT6/ NF-κB–dependent way. J Immunol. 2014; 193 (2): 645–54. DOI: 10.4049/ jimmunol.1301836.
  57. Dong H, Zhang X, Qian Y. Mast cells and neuroinflammation. Med Sci Monit Basic Res. 2014; 20: 200–6. DOI: 10.12659/ MSMBR.893093.
  58. Nemmer JM, Kuchner M, Datsi A, Oláh P, Julia V, Raap U, et al. Interleukin-31 signaling bridges the gap between immune cells, the nervous system and epithelial tissues. Front Med. 2021; 8: 639097. DOI: 10.3389/fmed.2021.639097.
  59. Singh B, Jegga AG, Shanmukhappa KS, Edukulla R, Khurana Hershey GH, Medvedovic M, et al. IL-31-driven skin remodeling involves epidermal cell proliferation and thickening that lead to impaired skin-barrier function. PLoS One. 2016; 11 (8): e0161877. DOI: 10.1371/journal.pone.0161877.
  60. Yagi Y, Andoh A, Nishida A, Shioya M, Nishimura T, et al. Interleukin-31 stimulates production of inflammatory mediators from human colonic subepithelial myofibroblasts. Int J Mol Med. 2007; 19: 941–6. DOI: 10.3892/ijmm.19.6.941.
  61. Jafarzadeh A, Mahdavi R, Jamali M, Hajghani H, Nemati M, Ebrahimi HA. Increased concentrations of Interleukin-33 in the serum and cerebrospinal fluid of patients with multiple sclerosis. Oman Med J. 2016; 31 (1): 40–45. DOI: 10.5001/omj.2016.08.
  62. Griesenauer B, Paczesny S. The ST2/IL-33 axis in immune cells during inflammatory diseases. Front Immunol. 2017; 8: 475. DOI: 10.3389/fimmu.2017.00475.
  63. Peine M, Marek RM, Löhning M. IL-33 in T Cell Differentiation, Function, and Immune Homeostasis. Trends Immunol. 2016; 37 (5): 321–33. DOI: 10.1016/j.it.2016.03.007.
  64. Jamali M, Rostami M, Gholamreza R, Sarab A, Mahdavi R. IL-33 polymorphism rs1929992 and its association with susceptibility to different pattern of multiple sclerosis. Tehran Univ Med J. 2018; 76 (7): 446–51.
  65. Al-Naseri MAS, Salman ED, Ad'hiah AH. Genetic analysis of IL4 (rs2070874), IL17A (rs2275913), and IL33 (rs7044343) polymorphisms in Iraqi multiple sclerosis patients by using T-plex real-time PCR method. Meta Gene. 2022; 31: 100986. DOI: 10.1016/j.mgene.2021.100986.
  66. Ahmadi M, Fathi F, Fouladi S, Alsahebfosul F, Manian M, Eskandari N. Serum IL-33 level and IL-33, IL1RL1 gene polymorphisms in asthma and multiple sclerosis patients. Curr Mol Med. 2019; 19 (5): 357–63. DOI: 10.2174/1566524019666190405120137.
  67. Allan D, Fairlie-Clarke KJ, Elliott CD, Schuh C, Barnett SC, Lassmann H, et al. Role of IL-33 and ST2 signalling pathway in multiple sclerosis: expression by oligodendrocytes and inhibition of myelination in central nervous system. Acta Neuropathol. Commun. 2016; 4 (1): 75. DOI: 10.1186/s40478-016-0344-1.
  68. Pei C, Barbour M, Fairlie-Clarke KJ, Allan D, Mu R, Jiang HR. Emerging role of interleukin-33 in autoimmune diseases. Immunology. 2014; 141: 9–1. DOI: 10.1111/imm.12174.
  69. Hudson CA, Christophi GP, Gruber RC, Wilmore JR, Lawrence DA, Massa PT. Induction of IL-33 expression and activity in central nervous system glia. J Leukocyte Biol. 2008; 84: 631–43. DOI: 10.1189/jlb.1207830.
  70. Zhang F, Tossberg JT, Spurlock CF, Yao SY, Aune TM, Sriram S. Expression of IL-33 and its epigenetic regulation in multiple sclerosis. Ann Clin Transl Neurol. 2014; 1: 307–18. DOI: 10.1002/ acn3.47.
  71. Gadani SP, Walsh JT, Smirnov I, Zheng J, Kipnis J. The gliaderived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron. 2015; 85: 703– 9. DOI: 10.1016/j.neuron.2015.01.013.
  72. Yasuoka S, Kawanokuchi J, Parajuli B, Jin S, Doi Y, Noda M, et al. Production and functions of IL-33 in the central nervous system. Brain Res. 2011; 1385: 8–17. DOI: 10.1016/j. brainres.2011.02.045.
  73. Kempuraj D, Khan MM, Thangavel R, Xiong Z, Yang E, Zaheer A. Glia maturation factor induces interleukin-33 release from astrocytes: implications for neurodegenerative diseases. J Neuroimmune Pharmacol. 2013; 8: 643–50. DOI: 10.1007/s11481-013-9439-7.
  74. Мельников М. В., Свиридова А. А., Роговский В. С., Бойко А. Н., Пащенков М. В. Роль макрофагов в развитии нейровоспаления при рассеянном склерозе. Журнал неврологии и психиатрии им. С. С. Корсакова. 2022; 122 (5): 51–56. DOI: 10.17116/jnevro202212205151.
  75. Franco R, Fernández-Suárez D. Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol. 2015; 131: 65–86. DOI: 10.1016/j.pneurobio.2015.05.003.
  76. Jiang HR, Milovanović M, Allan D, Niedbala W, Besnard AG, Fukada SY, et al. IL-33 attenuates EAE by suppressing IL17 and IFN-γ production and inducing alternatively activated macrophages. Eur J Immunol. 2012; 42: 1804–14. DOI: 10.1002/ eji.20114194718.
  77. Russi AE, Ebel ME, Yang Y, Brown MA. Male-specific IL-33 expression regulates sex-dimorphic EAE susceptibility. PNAS. 2018; 115 (7): E1520–E1529. DOI: 10.1073/pnas.1710401115.
  78. Klose CS, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol. 2016; 17 (7): 765–774. DOI: 10.1038/ni.3489.
  79. Braun H, Afonina IS, Mueller C, Beyaert R. Dichotomous function of IL-33 in health and disease: From biology to clinical implications. Biochemical Pharmacology. 2018; 148: 238–52. DOI: 10.1016/j. bcp.2018.01.0100006-2952.
  80. Komai-Koma M, Gilchrist DS, McKenzie AN, Goodyear CS, Xu D, Liew FY. IL-33 activates B1 cells and exacerbates contact sensitivity. J Immunol. 2011; 186 (4): 2584–91. DOI: 10.4049/ jimmunol.1002103.
  81. Sattler S, Ling GS, Xu D, Hussaarts L, Romaine A, Zhao H, et al. IL-10- producing regulatory B cells induced by IL-33 (Breg(IL-33)) effectively attenuate mucosal inflammatory responses in the gut. J Autoimmun. 2014; 50: 107–22. DOI: 10.1016/j.jaut.2014.01.032.
  82. Cayrol C, Girard J-Ph. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev. 2018; 281: 154–168. DOI: 10.1111/imr.12619.
  83. Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021; 18: 1106–21. DOI: 10.1038/s41423-020-00630-3.
  84. Lüthi AU, Cullen SP, McNeela EA, Duriez PJ, Afonina IS, Sheridan C, et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity. 2009; 31: 84–98. DOI: 10.1016/j.immuni.2009.05.007.
  85. Carriere V, Roussel L, Ortega N, Lacorre DA, Americh L, Aguilar L, et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci USA. 2007; 104 (1): 282–7. DOI: 10.1073/pnas.0606854104.
  86. Cayrol C, Girard JP. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr Opin Immunol. 2014; 31: 31–7. DOI: 10.1016/j.coi.2014.09.004.
  87. Ali S, Mohs A, Thomas M, Klare J, Ross R, Schmitz ML, et al. The dual function cytokine IL-33 interacts with the transcription factor NF-kappaB to dampen NF-kappaB-stimulated gene transcription. J Immunol. 2011; 187 (4): 1609–16. DOI: 10.4049/ jimmunol.1003080.
  88. Lefrancais E, Roga S, Gautier V, Gonzalez-de-Peredo A, Monsarrat B, Girard JP, et al. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci USA. 2012; 109 (5): 1673–8. DOI: 10.1073/pnas.1115884109.
  89. Waern I, Lundequist A, Pejler G, Wernersson S. Mast cell chymase modulates IL-33 levels and controls allergic sensitization in dustmite induced airway inflammation. Mucosal Immunol. 2013; 6 (5): 911–20. DOI: 10.1038/ mi.2012.129.
  90. Lefrancais E, Duval A, Mirey E, Roga S, Espinosa E, Cayrol C, et al. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. Proc Natl Acad Sci U S A. 2014; 111 (43): 15502–7. DOI: 10.1073/ pnas.1410700111.
  91. Hirose S, Jahani PS, Wang S, Jaggi U, Tormanen K, Yu J, et al. Type 2 innate lymphoid cells induce CNS demyelination in an HSV-IL-2 mouse model of multiple sclerosis. iScience. 2020; 23 (10): 101549. DOI: 10.1016/j.isci.2020.101549.
  92. Ofengeim D, Ito Y, Najafov A, Zhang Y, Shan B, DeWitt JP, et al. Activation of necroptosis in multiple sclerosis. Cell Rep. 2015; 10: 1836–49. DOI: 10.1016/j.celrep.2015.02.051.
  93. Verzosa AL, McGeever LA, Bhark SJ, Delgado T, Salazar N, Sanchez EL. Herpes simplex virus 1 infection of neuronal and nonneuronal cells elicits specific innate immune responses and immune evasion mechanisms. Front Immunol. 2021; 12: 644664. DOI: 10.3389/fimmu.2021.644664.
  94. Zhao J, Qin C, Liu Y, Rao Y, Feng P. Herpes simplex virus and pattern recognition receptors: an arms race. Front Immunol. 2021; 11: 613799. DOI: 10.3389/fimmu.2020.613799.
  95. Kaiser WJ, Upton JW, Mocarski ES. Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA dependent activator of IFN regulatory factors. J Immunol. 2008; 181: 6427–34. DOI: 10.4049/jimmunol.181.9.6427 104.
  96. Nile CJ, Barksby E, Jitprasertwong P, Preshaw PM, Taylor JJ. Expression and regulation of interleukin-33 in human monocytes. Immunology. 2010; 130 (2): 172–80. DOI: 10.1111/j.13652567.2009.03221.x.
  97. Zhang L, Lu R, Zhao G, Pflugfelder SC, Li DQ. TLR-mediated induction of pro-allergic cytokine IL-33 in ocular mucosal epithelium. Int J Biochem Cell Biol. 2011; 43: 1383–91. DOI: 10.1016/j.biocel.2011.06.003.
  98. Furue M, Yamamura K, Kido-Nakahara M, Nakahara T, Fukui Y. Emerging role of interleukin-31 and interleukin-31 receptor in pruritus in atopic dermatitis. Allergy. 2018; 73 (1): 29–36. DOI: 10.1111/all.13239.
  99. Ellermann-Eriksen S. Macrophages and cytokines in the early defence against herpes simplex virus. Virology J. 2005; 2: 59. DOI: 10.1186/1743-422X-2-59.
  100. Roychoudhury P, Swan DA, Duke E, Corey L, Zhu J, Davé V, et al. Tissue-resident T cell–derived cytokines eliminate herpes simplex virus-2–infected cells. J Clin Invest. 2020; 130 (6): 2903–19. DOI: 10.1172/JCI132583.
  101. Bello-Morales R, Andreu S, López-Guerrero JA. The role of herpes simplex virus type 1 infection in demyelination of the central nervous system. Int J Mol Sci. 2020; 21 (14): 5026. DOI: 10.3390/ijms21145026.
  102. Sun Y, Wen Y, Wang L, Wen L, You W, Wei S, et al. Therapeutic opportunities of interleukin-33 in the central nervous system. Front Immunol. 2021; 12: 654626. DOI: 10.3389/fimmu.2021.654626.