ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Полногеномное секвенирование и сравнительный геномный анализ мутантов Mycobacterium smegmatis, устойчивых к соединениям класса замещенных имидазо[1,2-b][1,2,4,5]тетразинов – кандидатов в противотуберкулезные препараты

Д. А. Маслов1, О. Б. Беккер1, К. В. Шур1, А. А. Ватлин1, А. В. Коротина2, В. Н. Даниленко1
Информация об авторах

1 Лаборатория генетики микроорганизмов, Институт общей генетики имени Н. И. Вавилова РАН, Москва

2 Лаборатория гетероциклических соединений, Институт органического синтеза имени И. Я. Постовского, Екатеринбург

Для корреспонденции: Дмитрий Антонович Маслов
ул. Губкина, д. 3, г. Москва, 119333; moc.liamg@kisssam.d

Информация о статье

Финансирование: исследование выполнено за счет гранта Российского научного фонда (проект №17-75-20060).

Благодарности: авторы выражают благодарность Наталье Михеечевой за ценные советы и методические наработки.

Статья получена: 30.05.2018 Статья принята к печати: 12.07.2018 Опубликовано online: 23.08.2018
|
  1. World Health Organization. Global Tuberculosis Report 2017. Geneva; 2017. p. 1–262.
  2. Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, van Soolingen D, et al. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. The Lancet. 2010 May; 375 (9728): 1830–43.
  3. Caminero JA, Sotgiu G, Zumla A, Migliori GB. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect Dis; 2010 Sep; 10 (9): 621–9.
  4. Maslov DA, Shur KV, Vatlin AA, Bekker OB, Korotina AV, Rusinov GL, et al. Search for azolo[1,2,4,5]tetrazines biotargets in mycobacteria. 43rd FEBS Congress Proccedings. FEBS OpenBio 2018; 8: 263– 263 Suppl. 1 Meeting Abstract: p. 09–172–M.
  5. Маслов Д. А., Беккер О. Б., Алексеева М. Г., Князева Л. М., Мавлетова Д. А., Афанасьев И. И. и др. Ингибиторы серин- треониновых протеинкиназ классов аминопиридинов и аминопиримидинов — кандидаты в препараты для лечения лекарственно устойчивых форм туберкулеза. Вестник РГМУ. 2017; (1): 42–7. DOI: 10.24075/brsmu.2017-01-04.
  6. Cooper CB. Development of Mycobacterium tuberculosis Whole Cell Screening Hits as Potential Antituberculosis Agents. J Med Chem. 2013 Oct 24;56 (20): 7755–60.
  7. Belisle JT, Mahaffey SB, Hill PJ. Isolation of Mycobacterium Species Genomic DNA. Mycobacteria Protocols. Totowa, NJ: Humana Press; 2010. p. 1–12.
  8. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010 Mar 1; 26 (5): 589–95. PMCID: PMC2828108.
  9. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011 Nov 1; 27 (21): 2987–93. PMCID: PMC3198575.
  10. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012 Mar; 22 (3): 568–76. PMCID: PMC3290792.
  11. Richard M, Gutiérrez AV, Viljoen AJ, Ghigo E, Blaise M, Kremer L. Mechanistic and Structural Insights Into the Unique TetR-Dependent Regulation of a Drug Efflux Pump in Mycobacterium abscessus. Front Microbiol Frontiers. 2018; 9: 649. PMCID: PMC5895659.
  12. Marmiesse M, Brodin P, Buchrieser C, Gutierrez C, Simoes N, Vincent V, et al. Macro-array and bioinformatic analyses reveal mycobacterial “core” genes, variation in the ESAT-6 gene family and new phylogenetic markers for the Mycobacterium tuberculosis complex. Microbiology. Microbiol Society; 2004 Feb; 150 (Pt 2): 483–96.
  13. Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol. 2003 Apr; 48 (1): 77–84.
  14. Peters JS, Calder B, Gonnelli G, Degroeve S, Rajaonarifara E, Mulder N, et al. Identification of Quantitative Proteomic Differences between Mycobacterium tuberculosis Lineages with Altered Virulence. Front Microbiol; 2016; 7 (139): 813. PMCID: PMC4885829.