ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Исследование коллоидных квантовых точек AginS2/ZnS в качестве флуоресцентных меток для тераностики: физические свойства, биораспределение и биосовместимость

М. С. Истомина1,2, Н. А. Печникова3,4, Д. В. Королёв, Е. И. Почкаева, Д. С. Мазинг2, М. М. Галагудза5, В. А. Мошников2, Е. В. Шляхто
Информация об авторах

1 Институт экспериментальной медицины ФГБУ «НМИЦ имени В. А. Алмазова», Санкт-Петербург, Россия

2 Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» имени В. И. Ульянова (Ленина), Санкт-Петербург

3 Центр экспериментальной фармакологии, Санкт-Петербургский государственный химико-фармацевтический университет, Санкт-Петербург

4 Зоологический институт РАН, Санкт-Петербург

5 Первый Санкт-Петербургский государственный медицинский университет имени И. П. Павлова, Санкт-Петербург

Для корреспонденции: Мария Сергеевна Истомина
пр. Пархоменко, д. 15 «Б», г. Санкт-Петербург, 194156; ur.ertnecvozamla@sm_animotsi

Статья получена: 28.07.2018 Статья принята к печати: 23.08.2018 Опубликовано online: 24.12.2018
|
  1. Мелерзанов А., Москалев А., Жаров В. Прецизионная медицина и молекулярная тераностика. Врач. 2016; (12): 11–14.
  2. Гареев К. Г., Бабикова К. Ю., Наумышева Е. Б., Постнов В. Н., Королев Д. В. Синтез наноматериалов с флуоресцентной меткой для медицинского назначения. Биотехносфера. 2017; 3 (51): 61–8.
  3. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chem Rev. 2010; 110 (5): 2620–40.
  4. Истомина М. С., Королев Д. В., Почкаева Е. И., Мазинг Д. С., Мошников В. А., Гареев К. Г., Бабикова К. Ю., Постнов В. Н. исследование возможности использования коллоидных квантовых точек на основе AgInS2/ZnS для флуоресцентного имиджинга в сравнении с флуорофорами, закрепленными на поверхности наночастиц. Трансляционная медицина. 2017; 4 (4): 56–65.
  5. Oh E, Liu R, Nel A, Gemill KB, Bilal M, Cohen Y, Medintz IL. Meta- analysis of cellular toxicity for cadmium-containing quantum dots. Nature nanotechnology. 2016; (11): 479–86.
  6. Tsoi KM, Dai Q, Alman BA, Chan WCW. Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Acc Chem Res. 2013; (46): 662–71.
  7. Ye L, Yong KT, Liu L et al. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nature Nanotech. 2012; (7): 453–8.
  8. Winnik FM, Maysinger D. Quantum dot cytotoxicity and ways to reduce it. Acc Chem Res. 2013; (46): 672–80.
  9. Ding Ya et al. Gold nanoparticles for nucleic acid delivery. Molecular therapy. 2014; 22 (6): 1075–83.
  10. Fitzpatrick JA. Andreko SK, Ernst LA, Waggoner AS, Ballou B, Bruchez MP. Long-term persistence and spectral blue shifting of quantum dots in vivo. Nano Lett. 2009; (9): 2736–41.
  11. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P et al. Understanding biophysicochemical interactions at the nano–bio interface. Nature Mater. 2009; 8 (7): 543–57.
  12. Li MM, Cao J, Yang JC, Shen YJ, Cai XL, Chen YW et al. Biodistribution and toxicity assessment of intratumorally injected arginine-glycine-aspartic acid peptide conjugated to CdSe/ZnS quantum dots in mice bearing pancreatic neoplasm. Chem Biol Interact. 2018; (291): 103–10.
  13. Dine EJ, Marchal S, Schneider R, Hamie B, Ghanbaja J, Roques- Carmes T et al. A facile approach for doxorubicine delivery in cancer cells by responsive and fluorescent core/shell quantum dots. Bioconjug Chem. 2018; 29 (7): 2248–56.
  14. Лесничая М. В., Сухов Б. Г., Шендрик Р. Ю., Сапожников А. Н., Трофимов Б. А. Синтез водорастворимых квантовых точек селенида серебра, люминесцирующих в окне прозрачности биологических тканей. Журнал общей химии. 2018; 88 (2): 307–10.
  15. Huang Y, Gao Y, Zhang Q, Zhang Y, Cao JJ, Ho W et al. Biocompatible FeOOH-Carbon quantum dots nanocomposites for gaseous NOx removal under visible light: Improved charge separation and High selectivity. J Hazard Mater. 2018; (354): 54–62.
  16. Drobintseva A, Polyakova V, Matyushkin L, Krylova Y, Masing D, Aleksandrova OA et al. Characterization of ZnSe/ZnS QD Conjugated with Antibody Labeling Kisspeptins. In 3-rd Int. Conf. of BioPhotonics, Florence, Italy. 2015.
  17. Alivisatos AP, Gu W, Larabell C. Quantum dots as cellular probes. Annu Rev Biomed Eng. 2005; (7): 55–76.
  18. Somers RC, Bawendi MG, Nocera DG. CdSe nanocrystal based chem-/bio-sensors. Chemical Society Reviews. 2007; 36 (4): 579–91.
  19. Shamirian A, Appelbe O, Zhang Q, Ganesh B, Kron SJ, Snee PT. A toolkit for bioimaging using near-infrared AgInS2/ZnS quantum dots. Journal of Materials Chemistry B. 2015; 3 (41): 8188–96.
  20. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science. 1998; 281 (5385): 2013–6.
  21. Chan WCW, Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 1998; 281 (5385): 2016–8.
  22. Tyrakowski CM, Snee PT. A primer on the synthesis, water- solubilization, and functionalization of quantum dots, their use as biological sensing agents, and present status Physical Chemistry Chemical Physics. 2014; 16 (3): 837–55.
  23. Yaghini E, Turner HD, Le Marois AM, Suhling K, Naasani I, MacRobert AJ. In vivo biodistribution studies and ex vivo lymph node imaging using heavy metal-free quantum dots. Biomaterials. 2016; (104): 182–91.
  24. Matea CT, Mocan T, Tabaran F, et al. Quantum dots in imaging, drug delivery and sensor applications. International Journal of Nanomedicine. 2017; (12): 5421–31.
  25. Wang L-W, Peng C-W, Chen C, Li Y. Quantum dots-based tissue and in vivo imaging in breast cancer researches: current status and future perspectives. Breast Cancer Research and Treatment. 2015; 151 (1): 7–17.
  26. Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chemical Society Reviews. 2015; 44 (14): 4792–834.
  27. Walling MA, Novak JA, Shepard JRE. Quantum Dots for live cell and in vivo imaging. International Journal of Molecular Sciences. 2009; 10 (2): 441–91.
  28. Kang Yan-Fei et al. Carbon quantum dots for zebrafish fluorescence imaging. Scientific reports. 2005; (5): 11835.
  29. Xu G, Lin G, Lin S, Wu N, Deng Y, Feng G et al. The Reproductive Toxicity of CdSe/ZnS Quantum Dots on the in vivo Ovarian Function and in vitro Fertilization. Scientific reports. 2016; (6): 37677.
  30. Tang H, Yang ST, Yang YF, Ke DM, Liu JH, Chen X et al. Blood clearance, distribution, transformation, excretion, and toxicity of near-infrared quantum dots Ag2Se in mice. ACS applied materials & interfaces. 2018; 8 (28): 17859–69.
  31. Wang C, Gao X, Su X. In vitro and in vivo imaging with quantum dots. Analytical and bioanalytical chemistry. 2010; 397 (4): 1397–415.
  32. Gao J, Chen K, Xie R et al. In Vivo Tumor-targeted fluorescence imaging using near-infrared non-cadmium quantum dots. Bioconjugate chemistry. 2010; 21 (4): 604–9.
  33. Liu X, Zhou P, Zhan H, Liu H, Zhang J et al. Synthesis and characterization of near–infrared-emitting CdHgTe/CdS/ZnS quantum dots capped by N-acetyl-L-cysteine for in vitro and in vivo imaging. RSC Advances. 2017; 7 (48): 29998–30007.
  34. Lin G et al. Passive tumor targeting and imaging by using mercaptosuccinic acid-coated near-infrared quantum dots. International journal of nanomedicine. 2015; (10): 335.
  35. Singh SK et al. Drug delivery approaches for breast cancer. International journal of nanomedicine. 2017; (12): 6205.
  36. Han X, Wang Y, Shi D. Preparation of QDs@ SiO2/polystyrene composite particles for cancer cells detection. Nano LIFE. 2018.
  37. Jain S et al. Applications of Fluorescent Quantum Dots for Reproductive Medicine and Disease Detection. In: Park SB, editor. Rijeka: IntechOpen, 2018; 6.
  38. Schipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small. 2009; 5 (1): 126–34.
  39. Yang L, Kuang H, Zhang W, Wei H, Xu H. Quantum dots cause acute systemic toxicity in lactating rats and growth restriction of offspring. Nanoscale. 2018; 10 (24): 11564–77.
  40. Roberts JR, Antonini JM, Porter DW et al. Lung toxicity and biodistribution of Cd/Se-ZnS quantum dots with different surface functional groups after pulmonary exposure in rats. Particle and Fibre Toxicology. 2013; (10): 5.
  41. Park Y, Ryu YM, Jung Y et al. Spraying quantum dot conjugates in the colon of live animals enabled rapid and multiplex cancer diagnosis using endoscopy. ACS nano. 2014; 8 (9): 8896–910.
  42. Salykina YF, Zherdeva VV, Dezhurov SV et al. Biodistribution and clearance of quantum dots in small animals. Saratov Fall Meeting 2010: Optical Technologies in Biophysics and Medicine. 2011; (12): 7999.
  43. Roberts JR, Antonini JM, Porter DW et al. Lung toxicity and biodistribution of Cd/Se-ZnS quantum dots with different surface functional groups after pulmonary exposure in rats. Particle and Fibre Toxicology. 2013; 10 (5).
  44. Park Y, Ryu YM, Jung Y et al. Spraying quantum dot conjugates in the colon of live animals enabled rapid and multiplex cancer diagnosis using endoscopy. ACS Nano. 2014; 7 (1): 9309.