ORIGINAL RESEARCH

Application of nanoscale polymer colloid carriers for targeted delivery of the brain-derived neurotrophic factor through the blood-brain barrier in experimental parkinsonism

Kapitonova MYu1, Alyautdin RN2, Wan-Syazli RWAL3, Nor-Ashikin MNK3, Ahmad A3, Norita S3, Dydykin SS4
About authors

1 Faculty of Medicine and Health Sciences, University Malaysia Sarawak (UNIMAS), Kota Samarahan, Sarawak, Malaysia

2 Department for Expertise of Medicinal Products safety, Scientific Centre for Expert Evaluation of Medicinal Products, Moscow

3 Faculty of Medicine, University Teknologi MARA, Sungai Buloh, Selangor, Malaysia

4 Department of Operative Surgery and Topographic Anatomy, Sechenov First Moscow State Medical University, Moscow

Correspondence should be addressed: Renad N. Alayutdin
1 Volokolamskiy Proezd 10, bl. 4, Moscow, 119876; ur.liam@nudtuayla

About paper

Funding: this work was supported by the grant 600-RMI/RAGS 5/3 (92/2013) of the Universiti Teknologi MARA (UiTM), Selangor, Malaysia.

Received: 2018-07-09 Accepted: 2018-08-20 Published online: 2018-12-23
|
  1. Alyautdin RN, Deshmukh R, Petrov VE. Transport lekarstvennykh veshchestv cherez gematoencephalicheskiy barier. Vestnik NII Molekulyarnoy meditsiny. 2003; 11–29.
  2. Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across blood-brain barrier. Drug Dev Ind Pharm. 2002; 28 (1): 1–13.
  3. Begley DJ. Understanding and circumventing the blood-brain barrier. Acta Paediatr Suppl. 2003; 92: 83–91.
  4. Lefauconneir JM. The blood brain barrier. J Physiological Data. 1998; 140 (1): 3–13.
  5. Alyautdin RN, Petrov VE, Kharkevich DA, Kreuter J. Passage of peptides across the blood-brain barrier with nanoparticles. Eur J Pharm Sci. 1994; (3): 91–2.
  6. Bibel M, Barde Y. Neurotrophins: key regulator of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 2000; (14): 2919–37.
  7. Castellenos-Ortega MR, Cruz-Aguado R, Martinez-Marty L. Nerve growth factor: possibilities and limitations of its clinical application. Rev Neurol. 1999; 29 (5): 439–71.
  8. Przedborski S, Jackson-Lewis V, Djaldetti R, Liberatore G, Vila M, Vukosavic S, Almer G. The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci. 2000; 16 (2): 135–42.
  9. Kreuter J. Nanoparticulate systems for brain delivery of drugs. Adv Drug Deliv Rev. 2001; (47): 65–81.
  10. Kurakhmaeva K, Djindjikhashvili I, Petrov V, Balabanjan V, Voronina T, Trofimov S et al. Brain targeting of nerve growth factor using poly(butylcyanoacrilate) nanoparticles. J Drug Targ. 2009; (17): 564–74.
  11. Limongi T, Rocchi A, Cesca F, Tan H, Miele E, Giugni A. Delivery of Brain-Derived Neurotrophic Factor by 3D Biocompatible Polymeric Scaffolds for Neural Tissue Engineering and Neuronal Regeneration. Mol Neurobiol. 2018 Mar 29. DOI: 10.1007/ s12035-018-1022-z.
  12. Tyler WJ, Perrett, Pozzo-Miller LD. The role of neurotrophins in neurotransmitter release. Neuroscience. 2002; (8): 524–31.
  13. Schindowski K, Belarbi K, Buée L. Neurotrophic factors in Alzheimer’s disease: role of axonal transport. Genes Brain Behav. 2008; (7): 43–56.
  14. Bhurtel S, Katila N, Neupane S, Srivastav S, Park PH, Choi D. Methyleneblue protects dopaminergic neurons against MPTP- induced neurotoxicity by upregulating brain-derived neurotrophic factor. Ann N Y Acad Sci. 2018.DOI: 10.1111/nyas.13870. Available at: https://www.ncbi.nlm.nih.gov/pubmed/29882218#.
  15. Chen JF, Wang M, Zhuang YH, Behnisch T. Intracerebroventricularly- administered 1-methyl-4-phenylpyridinium ion and brain derived neurotrophic faсtor affect catecholaminergic nerve terminals and neurogenesis in the hippocampus, striatum and substantia nigra. Neural Regen Res. 2018; (13): 717–26. DOI: 10.4103/1673-5374.230300.