DOI: 10.24075/vrgmu.2018.091

ОРИГИНАЛЬНОЕ ИССЛЕДОВАНИЕ

Экспрессия химерного антигенного рецептора в натуральных киллерах линии NK-92 путем трансдукции лентивирусными частицами, псевдотипированными поверхностными гликопротеинами вакцинного штамма вируса кори

Информация об авторах

Группа структурной организации Т-клеточного иммунитета, отдел геномики адаптивного иммунитета, Федеральное государственное бюджетное учреждение науки Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук, Москва

Для корреспонденции: Степан Петрович Чумаков
ул. Миклухо-Маклая, 16/10, г. Москва, 117997; moc.liamg@lukhtah

Информация о статье

Финансирование: работа выполнена при финансовой поддержке Министерства образования и науки РФ, уникальный код проекта RFMEFI60716X0156.

Статья получена: 27.11.2018 Статья принята к печати: 20.12.2018 Опубликовано online: 31.12.2018
|
  1. Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012; 12 (4): 269–81. DOI: 10.1038/nri3191. PubMed PMID: 22437939.
  2. Zah E, Lin MY, Silva-Benedict A, Jensen MC, Chen YY. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer immunology research. 2016; 4 (6): 498–508. DOI: 10.1158/2326-6066.CIR- 15-0231. PubMed PMID: 27059623.
  3. Olden BR, Cheng Y, Yu JL, Pun SH. Cationic polymers for non-viral gene delivery to human T cells. J Control Release. 2018; (282): 140–7. DOI: 10.1016/j.jconrel.2018.02.043. PubMed PMID: 29518467.
  4. Zhang Z, Qiu S, Zhang X, Chen W. Optimized DNA electroporation for primary human T cell engineering. BMC Biotechnol. 2018; 18 (1): 4. DOI: 10.1186/s12896-018-0419-0. PubMed PMID: 29378552.
  5. Tumaini B, Lee DW, Lin T, Castiello L, Stroncek DF, Mackall C et al. Simplified process for the production of anti-CD19-CAR-engineered T cells. Cytotherapy. 2013; 15 (11): 1406–15. DOI: 10.1016/j.jcyt.2013.06.003. PubMed PMID: 23992830.
  6. Yagita M, Huang CL, Umehara H, Matsuo Y, Tabata R, Miyake M et al. A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation. Leukemia. 2000; 14 (5): 922–30. PubMed PMID: 10803526.
  7. Gong JH, Maki G, Klingemann HG. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia. 1994; 8 (4): 652–8. PubMed PMID: 8152260.
  8. Matsuo Y, Drexler HG. Immunoprofiling of cell lines derived from natural killer-cell and natural killer-like T-cell leukemia-lymphoma. Leuk Res. 2003; 27 (10): 935–45. PubMed PMID: 12860014.
  9. Klingemann HG, Wong E, Maki G. A cytotoxic NK-cell line (NK- 92) for ex vivo purging of leukemia from blood. Biol Blood Marrow Transplant. 1996; 2 (2): 68–75. PubMed PMID: 9118301.
  10. Zhang J, Sun R, Wei H, Zhang J, Tian Z. Characterization of interleukin-15 gene-modified human natural killer cells: implications for adoptive cellular immunotherapy. Haematologica. 2004; 89 (3): 338–47. PubMed PMID: 15020274.
  11. Chen Y, You F, Jiang L, Li J, Zhu X, Bao Y et al. Gene-modified NK-92MI cells expressing a chimeric CD16-BB-zeta or CD64- BB-zeta receptor exhibit enhanced cancer-killing ability in combination with therapeutic antibody. Oncotarget. 2017; 8 (23): 37128–39. DOI: 10.18632/oncotarget.16201. PubMed PMID: 28415754.
  12. Suck G, Odendahl M, Nowakowska P, Seidl C, Wels WS, Klingemann HG et al. NK-92: an 'off-the-shelf therapeutic' for adoptive natural killer cell-based cancer immunotherapy. Cancer Immunol Immunother. 2016; 65 (4): 485–92. DOI: 10.1007/ s00262-015-1761-x. PubMed PMID: 26559813.
  13. Boissel L, Betancur M, Lu W, Wels WS, Marino T, Van Etten RA et al. Comparison of mRNA and lentiviral based transfection of natural killer cells with chimeric antigen receptors recognizing lymphoid antigens. Leuk Lymphoma. 2012; 53 (5): 958–65. DOI: 10.3109/10428194.2011.634048. PubMed PMID: 22023526.
  14. Humbert JM, Frecha C, Amirache Bouafia F, N'Guyen TH, Boni S, Cosset FL et al. Measles virus glycoprotein-pseudotyped lentiviral vectors are highly superior to vesicular stomatitis virus G pseudotypes for genetic modification of monocyte-derived dendritic cells. J Virol. 2012; 86 (9): 5192–203. DOI: 10.1128/ JVI.06283-11. PubMed PMID: 22345444.
  15. Frecha C, Costa C, Negre D, Gauthier E, Russell SJ, Cosset FL et al. Stable transduction of quiescent T cells without induction of cycle progression by a novel lentiviral vector pseudotyped with measles virus glycoproteins. Blood. 2008; 112 (13): 4843–52. DOI: 10.1182/blood-2008-05-155945. PubMed PMID: 18812471.
  16. Funke S, Maisner A, Muhlebach MD, Koehl U, Grez M, Cattaneo R et al. Targeted cell entry of lentiviral vectors. Mol Ther. 2008; 16 (8): 1427–36. DOI: 10.1038/mt.2008.128. PubMed PMID: 18578012.
  17. Kneissl S, Abel T, Rasbach A, Brynza J, Schneider-Schaulies J, Buchholz CJ. Measles virus glycoprotein-based lentiviral targeting vectors that avoid neutralizing antibodies. PLoS ONE. 2012; 7 (10): e46667. DOI: 10.1371/journal.pone.0046667. PubMed PMID: 23071609.
  18. Ou W, Marino MP, Suzuki A, Joshi B, Husain SR, Maisner A et al. Specific targeting of human interleukin (IL)-13 receptor alpha2- positive cells with lentiviral vectors displaying IL13. Human gene therapy methods. 2012; 23 (2): 137–47. DOI: 10.1089/ hgtb.2012.054. PubMed PMID: 22612657.
  19. Marino MP, Panigaj M, Ou W, Manirarora J, Wei CH, Reiser J. A scalable method to concentrate lentiviral vectors pseudotyped with measles virus glycoproteins. Gene Ther. 2015; 22 (3): 280–5. DOI: 10.1038/gt.2014.125. PubMed PMID: 25608718.
  20. Sutlu T, Nystrom S, Gilljam M, Stellan B, Applequist SE, Alici E. Inhibition of intracellular antiviral defense mechanisms augments lentiviral transduction of human natural killer cells: implications for gene therapy. Hum Gene Ther. 2012; 23 (10): 1090–100. DOI: 10.1089/hum.2012.080. PubMed PMID: 22779406.