METHOD

Combination laser therapy for epiretinal membrane: a physico-mathematical model

About authors

1 Pirogov Russian National Research Medical University, Moscow, Russia

2 Research Center for Ophthalmology, Pirogov Russian National Research Medical University, Moscow, Russia

3 Department of Ophthalmology, Faculty of Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia

4 Stepanov Institute of Physics, Minsk, Belarus

Correspondence should be addressed: Ekaterina P. Tebina
Volokolamskoe shosse 30, bl. 2, 123182; ur.liam@anibetaniretake

About paper

Author contribution: Takhchidi KP and Kachalina GF conceived and designed the study; Tebina EP collected and analyzed the data; Kasminina TA performed laser therapy; Zheltov GI, Kasminina TA, and Tebina EP wrote the manuscript; Zheltov GI and Takhchidi KP revised the manuscript.

Received: 2019-03-01 Accepted: 2019-03-15 Published online: 2019-04-30
|
  1. Leask A, Abraham D. TGF-β signaling and the fibrotic response. The FASEB Journal. 2004; 18 (7): 816–27.
  2. Kachalina GF, Kasminina TA, Ivanova EV, Kuranova OI. Laser treatment of transudative maculopathy caused by the epiretinal membrane. Modern technologies of treatment of vitreoretinal pathology. S. Fyodorov Eye Microsurgery Federal State Institution. 2012; 94–6.
  3. Patronas M, Kroll A, Lou P, Ryan E. a Review of Vitreoretinal Interface Pathology. International Ophthalmology Clinics. 2009; 49 (1): 133–43.
  4. Ponomareva EN, Kazaryan AA. The electroretinogram and the pattern of optical coherence tomography in patients with idiopathic epiretinal membrane. Russian Ophthalmological Journal. 2013; 66–9.
  5. Guidry C. The role of Müller cells in fibrocontractive retinal disorders. Progress in Retinal and Eye Research. 2005; 24 (1): 75–86.
  6. Harada C, Mitamura Y, Harada T. The role of cytokines and trophic factors in epiretinal membranes: Involvement of signal transduction in glial cells. Progress in Retinal and Eye Research. 2006; 25 (2): 149–64.
  7. Zhao F, Gandorfer A, Haritoglou C, Scheler R, Schaumberger M, Kampik a et al. Epiretinal Cell Proliferation in Macular Pucker and Vitreomacular Traction Syndrome. Retina. 2013; 33 (1): 77–88.
  8. Joshi M, Agrawal S, Christoforidis J. Inflammatory Mechanisms of Idiopathic Epiretinal Membrane Formation. Mediators of Inflammation. 2013; 1–6.
  9. Hinz B, Phan SH, Thannickal VJ, et al. The myofibroblast: one function, multiple origins. Am J Pathol 2007; 170: 1807–16.
  10. Zakharov VD, Borzenok SA, Gorshkov IM, Kolesnik SV, Kolesnik AI, Miridonova AV. Etiological and pathogenetic aspects and role of vitreoretinal interface structures in idiopathic epiretinal membranes formation. Practical medicine. 2018; (114): 71–76.
  11. Kachalina GF, Doga AV, Kasmynina TA, Kuranova OI. Epiretinal fibrosis: pathogenesis, outcomes, treatment methods. Ophthalmosurgery. 2013; 4: 108–10.
  12. Kuranova OI. The study of the effectiveness of micropulse laser irradiation with a wavelength of 577 nm in macular edema after surgical removal of idiopathic epiretinal membrane. [dissertation]. 2014; 33.
  13. Bu S, Kuijer R, Li X, Hooymans J, Los L. Idiopathic epiretinal membrane. Retina. 2014; 34 (12): 2317–35.
  14. Bol'shunov AV. Questions of laser ophthalmology. M. 2013; 316.
  15. Krasnov MM, Saprykin PI, Doronin PP, Nikolskaya GM, Akopyan VS, Mamedov NG. Electron-microscopic examination of the fundus tissue during laser coagulation. Bulletin of Ophthalmology. 1973; (2): 9–12.
  16. Fedoruk NA, Fedorov AA, Bol'shunov AV. Morphological and histochemical effects of subthreshold laser therapy on the chorioretinal complex/ Bulletin of Ophthalmology. 2013; (5): 73–81.
  17. Zheltov GI, Romanov GS, Romanov OG, Ivanova EV. Selective effect of laser pulses on the retinal pigment epithelium. Physical basis. New in ophthalmology. 2012; (3): 37
  18. Tahchidi HP, Kachalina GF, Kasmynina TA, Tebina EP. The method of combined laser treatment of the initial stage of epiretinal fibrosis RF № 2634684. 02.11.2017.
  19. Zheltov GI. Effect of intense optical radiation on eye tissue: research and applications. Extended abstract of candidate’s thesis. 1996; 92.
  20. Zheltov GI. Biophysics of the destructive action of the above-threshold laser radiation on the fundus tissue. II All Russian seminar: "MAKULA 2006". Report in the conference proceedings. 2006; 71–85.
  21. Jacobs S. Safety with Lasers and Other Optical Sources, by D. Sliney and M. Wolbarsht. Medical Physics. 1981; 8 (5): 725–6.
  22. Karslow G, Eger D. Thermal conductivity of solids. M .: Science, 1964; 488
  23. Linnik LA, Zheltov GI, Glazkov VN, Puhlik ES, Privalov AP. Change of energy thresholds of laser coagulation of retinal tissues with the age of patients. Ophthalmological journal. 1988; 6 (302), 355–8.
  24. Zheltov GI. Effects of above-threshold laser radiation on the fundus tissue. Ophthalmology in Belarus 2009; 3 (03): 24–40.
  25. Barnes FS. Bological Damage Resulting from Thermal Pulses. In: Wolbarsht ML, Ed. Laser Application in Medicine and Biology. Ntw York: Plenum Press, 1984; 205–22.
  26. Klepinina OB Subthreshold micropulse laser treatment with a wavelength of 577 nm in the treatment of central serous chorioretinopathy [dissertation]. 2014; 61.
  27. Romanov OG, Romanov GS, Zheltov GI. Numerical modelling of photo-thermal and photo-mechanical effects in absorbing biological structures under action of short laser pulses Proceedings of SPIE. 2013; (8803). doi: 10.1117/12.2032462
  28. Zheltov G, Lisinetskii V, Grabtchikov A, Orlovich V. Low-threshold cavitation in water using IR laser pulse trains. Applied Optics. 2008; 47 (20): 3549–54.
  29. Oraevsky A, Jacques S, Esenaliev R, Tittel F. Pulsed laser ablation of soft tissues, gels, and aqueous solutions at temperatures below 100°C. Lasers in Surgery and Medicine. 1996; 18 (3): 231–40.